Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33383499

ABSTRACT

Opines are low-molecular-weight metabolites specifically biosynthesized by agrobacteria-transformed plant cells when plants are struck by crown gall and hairy root diseases, which cause uncontrolled tissue overgrowth. Transferred DNA is sustainably incorporated into the genomes of the transformed plant cells, so that opines constitute a persistent biomarker of plant infection by pathogenic agrobacteria and can be targeted for crown gall/hairy root disease diagnosis. We developed a general, rapid, specific and sensitive analytical method for overall opine detection using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-MS-QTOF), with easy preparation of samples. Based on MS, MS/MS and chromatography data, the detection selectivity of a wide range of standard opines was validated in pure solution and in different plant extracts. The method was successfully used to detect different structural types of opines, including opines for which standard compounds are unavailable, in tumors or hairy roots induced by pathogenic strains. As the method can detect a wide range of opines in a single run, it represents a powerful tool for plant gall analysis and crown gall/hairy root disease diagnosis. Using an appropriate dilution of plant extract and a matrix-based calibration curve, the quantification ability of the method was validated for three opines belonging to different families (nopaline, octopine, mannopine), which were accurately quantified in plant tissue extracts.


Subject(s)
Arginine/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Mannitol/analogs & derivatives , Plant Tumors , Spectrometry, Mass, Electrospray Ionization/methods , Agrobacterium , Arginine/analysis , Biomarkers/analysis , Mannitol/analysis , Plant Diseases , Plant Roots/chemistry , Reproducibility of Results
2.
Anal Bioanal Chem ; 412(6): 1419-1430, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31940089

ABSTRACT

Insect venom is a highly complex mixture of bioactive compounds, containing proteins, peptides, and small molecules. Environmental factors can alter the venom composition and lead to intraspecific variation in its bioactivity properties. The investigation of discriminating compounds caused by variation impacts can be a key to manage sampling and explore the bioactive compounds. The present study reports the development of a peptidomic methodology based on UHPLC-ESI-QTOF-HRMS analysis followed by a nontargeted multivariate analysis to reveal the profile variance of Vespa velutina venom collected in different conditions. The reliability of the approach was enhanced by optimizing certain XCMS data processing parameters and determining the sample peak threshold to eliminate the interfering features. This approach demonstrated a good repeatability and a criterion coefficient of variation (CV) > 30% was set for deleting nonrepeatable features from the matrix. The methodology was then applied to investigate the impact of collection period variation. PCA and PLS-DA models were used and validated by cross-validation and permutation tests. A slight discrimination was found between winter and summer hornet venom in two successive years with 10 common discriminating compounds. Graphical abstract.


Subject(s)
Chromatography, Liquid/methods , Peptides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Wasp Venoms/chemistry , Animals , Multivariate Analysis , Reproducibility of Results , Specimen Handling
3.
Toxicon ; 176: 1-9, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31935389

ABSTRACT

The present study aimed to explore the potential antioxidant molecules of the Asian hornet venom (Vespa velutina nigrithorax) responsible for radical scavenging activity and human keratinocyte protection against oxidative stress. We developed a first technical platform that combined a DPPH radical scavenging chemical assay and cytotoxicity and ROS (reactive oxygen species) production in HaCaT keratinocyte cells exposed to UVB to evaluate the antioxidant property of V. velutina venom. We further employed Thin Layer Chromatography (TLC) combined with the DPPH assay as a targeted separation approach to isolate the antioxidant compounds responsible for the free radical scavenging property of V. velutina venom. In parallel, the latter was fractionated by a HPLC-DAD non-targeted separation approach. From this experiment, nine fractions were generated which were again evaluated separately for their antioxidant properties using DPPH assays. Results showed that only one fraction exhibited significant antioxidant activity in which serotonin was identified as the major compound by a UHPLC-ESI-QTOF HRMS/MS approach. We finally demonstrated, using purified serotonin molecule that this bioactive structure is mostly responsible for the free radical scavenging property of the crude venom as evidenced by DPPH and ROS assays in HaCaT cells exposed to UVB.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , Wasp Venoms/pharmacology , Animals , Chromatography, Thin Layer , Humans , Keratinocytes/physiology , Reactive Oxygen Species , Wasps
SELECTION OF CITATIONS
SEARCH DETAIL
...