Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732665

ABSTRACT

This study synthesized and modified a semi-interpenetrating polymer network hydrogel from polyacrylamide, N,N'-dimethylacrylamide, and maleic acid in a potassium hydroxide solution. The chemical composition, interior morphology, thermal properties, mechanical characteristics, and swelling behaviors of the initial hydrogel (SH) and modified hydrogel (SB) in water, salt solutions, and buffer solutions were investigated. Hydrogels were used as phosphate fertilizer (PF) carriers and applied in farming techniques by evaluating their impact on soil properties and the growth of mustard greens. Fourier-transform infrared spectra confirmed the chemical composition of SH, SB, and PF-adsorbed hydrogels. Scanning electron microscopy images revealed that modification increased the largest pore size from 817 to 1513 µm for SH and SB hydrogels, respectively. After modification, the hydrogels had positive changes in the swelling ratio, swelling kinetics, thermal properties, mechanical and rheological properties, PF absorption, and PF release. The modification also increased the maximum amount of PF loaded into the hydrogel from 710.8 mg/g to 770.9 mg/g, while the maximum % release of PF slightly increased from 84.42% to 85.80%. In addition, to evaluate the PF release mechanism and the factors that influence this process, four kinetic models were applied to confirm the best-fit model, which included zero-order, first-order, Higuchi, and Korsmeyer-Peppas. In addition, after six cycles of absorption and release in the soil, the hydrogels retained their original shapes, causing no alkalinization or acidification. At the same time, the moisture content was higher as SB was used. Finally, modifying the hydrogel increased the mustard greens' lifespan from 20 to 32 days. These results showed the potential applications of modified semi-IPN hydrogel materials in cultivation.

2.
J Tissue Eng Regen Med ; 12(1): 89-97, 2018 01.
Article in English | MEDLINE | ID: mdl-27925440

ABSTRACT

Many studies have highlighted the role of silicon in human bone formation and maintenance. Silicon, in fact, is considered to nucleate the precipitation of hydroxyapatite and to reduce the bone resorption. For this reason, we have combined silk fibroin (SF) with silicon-releasing diatom particles (DPs), as potential material for bone tissue engineering applications. Sponges of fibroin loaded with different amounts and sizes of DPs were prepared by solvent casting-particulate leaching method, and their morphology, porosity and mechanical properties were evaluated. The biological effect of diatom addition was assessed on human osteosarcoma cell line MG63, a suitable osteoblast-like model, through cell adhesion, metabolic activity and proliferation assays. In addition, alkaline phosphatase activity, osterix and collagen type I production in MG63 cell line were assessed as markers of early bone formation to demonstrate a pro-mineralization potential of scaffolds. Results of the studies showed that addition to fibroin of diatoms particles improved the osteogenic properties of osteoblast-like cells compared with the pure SF. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Biocompatible Materials/pharmacology , Bone and Bones/physiology , Diatoms/chemistry , Fibroins/pharmacology , Tissue Engineering/methods , Alkaline Phosphatase/metabolism , Bone and Bones/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Diatoms/ultrastructure , Elastic Modulus , Humans , Tissue Scaffolds/chemistry
3.
Mater Sci Eng C Mater Biol Appl ; 59: 471-479, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26652398

ABSTRACT

Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions.


Subject(s)
Bone Substitutes/chemistry , Bone and Bones , Diatoms/chemistry , Nanoparticles/chemistry , Silicon/chemistry , Tissue Engineering/methods , 3T3 Cells , Animals , Materials Testing/methods , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...