Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 460: 132345, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37643575

ABSTRACT

Composting with food waste was assessed for its efficacy in decontaminating Bisphenol A (BPA). In a BPA-treated compost pile, the initial concentration of BPA 847 mg kg-1 fell to 6.3 mg kg-1 (99% reduction) over a 45-day composting period. The biodegradation rate was at its highest when bacterial activity peaked in the mesophilic and thermophilic phases. The average rate of total biodegradation was 18.68 mg kg-1 day-1. Standard methods were used to assess physicochemical parameters of the compost matrix and gas chromatography combined with mass spectrometry (GC/MS) was used to identify BPA intermediates. Next-generation sequencing (NGS) was used to detect BPA degraders and the diverse bacterial communities involved in BPA decomposition. These communities were found consist of 12 phyla and 21 genera during the composting process and were most diversified during the maturation phase. Three dominant phyla, Firmicutes, Pseudomonadota, and Bacteroidetes, along with Lactobacillus, Proteus, Bacillus, and Pseudomonas were found to be the most responsible for BPA degradation. Different bacterial communities were found to be involved in the food waste compost biodegradation of BPA at different stages of the composting process. In conclusion, food waste composting can effectively remove BPA, resulting in a safe product. These findings might be used to expand bioremediation technologies to apply to a wide range of pollutants.


Subject(s)
Composting , Endocrine Disruptors , Refuse Disposal , Animals , Biodegradation, Environmental , Food
2.
Environ Pollut ; 316(Pt 2): 120640, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36403881

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.


Subject(s)
Brassica , Composting , Diethylhexyl Phthalate , Refuse Disposal , Humans , Germination , Diethylhexyl Phthalate/toxicity , Seeds
3.
Environ Sci Pollut Res Int ; 30(11): 28718-28729, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36399295

ABSTRACT

This study investigated the spatiotemporal variation and source characteristics of volatile organic compounds (VOCs) in Kaohsiung Harbor, one of the busiest ports in the world. The VOCs' potential to form ozone (O3) and secondary organic aerosols (SOAs) was also examined. The temporal variation was studied in February, May, July, and November of 2020, while the spatial distribution was investigated in the export processing zone (KEPZ) and at the two port entrances (E1 and E2). The most polluted month in the harbor was November (37.7 ± 12.6 ppbv), while the most polluted site was the industrial area (KEPZ). A significant positive correlation was found between VOCs and O3 (r = 0.985). Meanwhile, a moderate positive correlation (r = 0.449) was observed between VOCs and secondary organic aerosol formation potential (SOAFP), mainly affected by the concentration of toluene in the study area. The diagnostic ratios indicated that the air parcels in the site were "fresh," and three possible ambient sources of VOC were identified by the positive matrix factorization (PMF): industrial emissions (53.6%), freight transport emissions (29.6%), and others (17.7%). The study highlights the current state of VOCs and their potential sources in the port city of Kaohsiung, which can be used to enhance the strategies for regulating and controlling industrial activities and improving air pollution control measures to reduce VOC emissions.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Cities , Ozone/analysis , China
4.
Environ Monit Assess ; 194(Suppl 2): 775, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36255561

ABSTRACT

Access to sufficient water, sanitation, and hygiene (WASH) services is a crucial requirement for patients during therapy and general well-being in the hospital. However, in low- and middle-income countries, these services are often inadequate, resulting in increased morbidity and mortality of patients. This study aimed at assessing the current situation of WASH services in six District Health Care Facilities (DHCFs) in rural areas of the Mekong Delta provinces, Vietnam. The results showed that these services were available with inappropriate quality, which did not compromise the stakeholders' needs. The revealed WASH infrastructures have raised concerns about the prolonged hospital stays for patients and push nosocomial infections to a high level. The safety of the water supply was doubted as the high E. coli (> 60%) and total coliform incidence (86%) was observed with very low residual chlorine concentration (< 0.1 mg/L) in water quality assessment. Moreover, water supply contained a high concentration of iron (up to 15.55 mg/L) in groundwater in one DHCF. Technical assessment tool analysis proved that the improper management and lack of knowledge by human resources were the primary roots of the observed status WASH services. Improvement of the perceptions of WASH should be done for the hospital staff with collaboration and support from the government to prevent incidents in the future.


Subject(s)
Escherichia coli , Sanitation , Humans , Sanitation/methods , Chlorine , Vietnam , Environmental Monitoring , Hygiene , Water Supply , Iron , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL
...