Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Prev Med ; 63(4): 469-477, 2022 10.
Article in English | MEDLINE | ID: mdl-36137667

ABSTRACT

INTRODUCTION: Consumer product‒related traumatic brain injury in children is common, but long-term trends have not been well characterized. Understanding the long-term trends in consumer product‒related traumatic brain injury may inform prevention efforts. The study objective is to examine the trends in consumer product‒related traumatic brain injury in school-aged children. METHODS: Data were extracted from the National Electronic Injury Surveillance System-All Injury Program for initial emergency department visits for consumer product‒related traumatic brain injury (2000-2019) in school-aged children and analyzed in 2021. RESULTS: Approximately 6.2 million children presented to emergency department with consumer product‒related traumatic brain injury during 2000-2019. Consumer product‒related traumatic brain injury increased from 4.5% of overall consumer product‒emergency department visits in 2000 to 12.3% in 2019, and its incidence rate (cases per 100,000 population) was higher in males (681.2; 95% CI=611.2, 751.2) than in females (375.8; 95% CI=324.1, 427.6). The annual percentage change in consumer product‒related traumatic brain injury was 3.6% from 2000 to 2008, 13.3% from 2008 to 2012, and ‒2.0% through 2019. Average annual percentage change was higher in females (5.1%; 95% CI=3.4, 6.8) than in males (2.8%; 95% CI=1.6, 3.9). Consumer product‒related traumatic brain injury increased from 2000 to 2012 in females and then remained stable. In males, annual percentage change increased from 2008 to 2012 and then declined through 2019. CONCLUSIONS: Traumatic brain injury incidence rate in school-aged children increased from 2000 to 2019, peaked in 2012, and then declined in males but not in females. Percentage increases were highest in females. Prevention strategies should continue, with a specific focus on reducing consumer product‒related traumatic brain injury in female children.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries, Traumatic/epidemiology , Child , Emergency Service, Hospital , Female , Humans , Incidence , Law Enforcement , Male , United States/epidemiology
2.
Nat Protoc ; 16(9): 4227-4264, 2021 09.
Article in English | MEDLINE | ID: mdl-34341580

ABSTRACT

Laser scanning is used in advanced biological microscopy to deliver superior imaging contrast, resolution and sensitivity. However, it is challenging to scale up the scanning speed required for interrogating a large and heterogeneous population of biological specimens or capturing highly dynamic biological processes at high spatiotemporal resolution. Bypassing the speed limitation of traditional mechanical methods, free-space angular-chirp-enhanced delay (FACED) is an all-optical, passive and reconfigurable laser-scanning approach that has been successfully applied in different microscopy modalities at an ultrafast line-scan rate of 1-80 MHz. Optimal FACED imaging performance requires optimized experimental design and implementation to enable specific high-speed applications. In this protocol, we aim to disseminate information allowing FACED to be applied to a broader range of imaging modalities. We provide (i) a comprehensive guide and design specifications for the FACED hardware; (ii) step-by-step optical implementations of the FACED module including the key custom components; and (iii) the overall image acquisition and reconstruction pipeline. We illustrate two practical imaging configurations: multimodal FACED imaging flow cytometry (bright-field, fluorescence and second-harmonic generation) and kHz 2D two-photon fluorescence microscopy. Users with basic experience in optical microscope operation and software engineering should be able to complete the setup of the FACED imaging hardware and software in ~2-3 months.


Subject(s)
Microscopy, Confocal/methods , Optical Imaging/methods , Flow Cytometry , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence, Multiphoton , Optical Imaging/instrumentation
3.
Epidemiol Infect ; 149: e28, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33455588

ABSTRACT

As the on-going severe acute respiratory syndrome coronavirus 2 pandemic, we aimed to understand whether economic reopening (EROP) significantly influenced coronavirus disease 2019 (COVID-19) incidence. COVID-19 data from Texas Health and Human Services between March and August 2020 were analysed. COVID-19 incidence rate (cases per 100 000 population) was compared to statewide for selected urban and rural counties. We used joinpoint regression analysis to identify changes in trends of COVID-19 incidence and interrupted time-series analyses for potential impact of state EROP orders on COVID-19 incidence. We found that the incidence rate increased to 145.1% (95% CI 8.4-454.5%) through 4th April, decreased by 15.5% (95% CI -24.4 -5.9%) between 5th April and 30th May, increased by 93.1% (95% CI 60.9-131.8%) between 31st May and 11th July and decreased by 13.2% (95% CI -22.2 -3.2%) after 12 July 2020. The study demonstrates the EROP policies significantly impacted trends in COVID-19 incidence rates and accounted for increases of 129.9 and 164.6 cases per 100 000 populations for the 24- or 17-week model, respectively, along with other county and state reopening ordinances. The incidence rate decreased sharply after 12th July considering the emphasis on a facemask or covering requirement in business and social settings.


Subject(s)
COVID-19/economics , Communicable Disease Control , Adult , COVID-19/epidemiology , Female , Holidays , Humans , Incidence , Male , Middle Aged , Texas/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...