Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 15(757): eabn9009, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282910

ABSTRACT

Neural crest cells (NCCs) are multipotent stem cells that can differentiate into multiple cell types, including the osteoblasts and chondrocytes, and constitute most of the craniofacial skeleton. Here, we show through in vitro and in vivo studies that the transcriptional regulators Yap and Taz have redundant functions as key determinants of the specification and differentiation of NCCs into osteoblasts or chondrocytes. Primary and cultured NCCs deficient in Yap and Taz switched from osteogenesis to chondrogenesis, and NCC-specific deficiency for Yap and Taz resulted in bone loss and ectopic cartilage in mice. Yap bound to the regulatory elements of key genes that govern osteogenesis and chondrogenesis in NCCs and directly regulated the expression of these genes, some of which also contained binding sites for the TCF/LEF transcription factors that interact with the Wnt effector ß-catenin. During differentiation of NCCs in vitro and NCC-derived osteogenesis in vivo, Yap and Taz promoted the expression of osteogenic genes such as Runx2 and Sp7 but repressed the expression of chondrogenic genes such as Sox9 and Col2a1. Furthermore, Yap and Taz interacted with ß-catenin in NCCs to coordinately promote osteoblast differentiation and repress chondrogenesis. Together, our data indicate that Yap and Taz promote osteogenesis in NCCs and prevent chondrogenesis, partly through interactions with the Wnt-ß-catenin pathway.


Subject(s)
Chondrogenesis , Osteogenesis , Animals , Mice , beta Catenin/genetics , Cell Differentiation , Chondrogenesis/genetics , Core Binding Factor Alpha 1 Subunit , Neural Crest , Osteogenesis/genetics , TCF Transcription Factors , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
2.
J Vis Exp ; (174)2021 08 13.
Article in English | MEDLINE | ID: mdl-34459809

ABSTRACT

Neural crest cells (NCCs) are vertebrate embryonic multipotent cells that can migrate and differentiate into a wide array of cell types that give rise to various organs and tissues. Tissue stiffness produces mechanical force, a physical cue that plays a critical role in NCC differentiation; however, the mechanism remains unclear. The method described here provides detailed information for the optimized generation of polyacrylamide hydrogels of varying stiffness, the accurate measurement of such stiffness, and the evaluation of the impact of mechanical signals in O9-1 cells, a NCC line that mimics in vivo NCCs. Hydrogel stiffness was measured using atomic force microscopy (AFM) and indicated different stiffness levels accordingly. O9-1 NCCs cultured on hydrogels of varying stiffness showed different cell morphology and gene expression of stress fibers, which indicated varying biological effects caused by mechanical signal changes. Moreover, this established that varying the hydrogel stiffness resulted in an efficient in vitro system to manipulate mechanical signaling by altering gel stiffness and analyzing the molecular and genetic regulation in NCCs. O9-1 NCCs can differentiate into a wide range of cell types under the influence of the corresponding differentiation media, and it is convenient to manipulate chemical signals in vitro. Therefore, this in vitro system is a powerful tool to study the role of mechanical signaling in NCCs and its interaction with chemical signals, which will help researchers better understand the molecular and genetic mechanisms of neural crest development and diseases.


Subject(s)
Hydrogels , Neural Crest , Cell Differentiation , Cell Movement , Microscopy, Atomic Force , Multipotent Stem Cells
3.
J Cardiovasc Dev Dis ; 8(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34436231

ABSTRACT

The neural crest (NC) is a multipotent and temporarily migratory cell population stemming from the dorsal neural tube during vertebrate embryogenesis. Cardiac neural crest cells (NCCs), a specified subpopulation of the NC, are vital for normal cardiovascular development, as they significantly contribute to the pharyngeal arch arteries, the developing cardiac outflow tract (OFT), cardiac valves, and interventricular septum. Various signaling pathways are shown to orchestrate the proper migration, compaction, and differentiation of cardiac NCCs during cardiovascular development. Any loss or dysregulation of signaling pathways in cardiac NCCs can lead to abnormal cardiovascular development during embryogenesis, resulting in abnormalities categorized as congenital heart defects (CHDs). This review focuses on the contributions of cardiac NCCs to cardiovascular formation, discusses cardiac defects caused by a disruption of various regulatory factors, and summarizes the role of multiple signaling pathways during embryonic development. A better understanding of the cardiac NC and its vast regulatory network will provide a deeper insight into the mechanisms of the associated abnormalities, leading to potential therapeutic advancements.

4.
Front Cell Dev Biol ; 9: 706623, 2021.
Article in English | MEDLINE | ID: mdl-34307386

ABSTRACT

Neural crest (NC) cells are a migratory stem cell population in vertebrate embryogenesis that can give rise to multiple cell types, including osteoblasts, chondrocytes, smooth muscle cells, neurons, glia, and melanocytes, greatly contributing to the development of different tissues and organs. Defects in NC development are implicated in many human diseases, such as numerous syndromes, craniofacial aberration and congenital heart defects. Research on NC development has gained intense interest and made significant progress. Recent studies showed that the Hippo-Yap pathway, a conserved fundamental pathway with key roles in regulation of cell proliferation, survival, and differentiation, is indispensable for normal NC development. However, the roles and mechanisms of the Hippo-Yap pathway in NC development remain largely unknown. In this review, we summarize the key functions of the Hippo-Yap pathway indicated in NC induction, migration, proliferation, survival, and differentiation, as well as the diseases caused by its dysfunction in NC cells. We also discuss emerging current and future studies in the investigation of the Hippo-Yap pathway in NC development.

SELECTION OF CITATIONS
SEARCH DETAIL
...