Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Emerg Infect Dis ; 30(5): 991-994, 2024 May.
Article in English | MEDLINE | ID: mdl-38666642

ABSTRACT

African swine fever virus (ASFV) genotype II is endemic to Vietnam. We detected recombinant ASFV genotypes I and II (rASFV I/II) strains in domestic pigs from 6 northern provinces in Vietnam. The introduction of rASFV I/II strains could complicate ongoing ASFV control measures in the region.


Subject(s)
African Swine Fever Virus , African Swine Fever , Genotype , Phylogeny , Animals , African Swine Fever Virus/genetics , African Swine Fever Virus/classification , Vietnam/epidemiology , African Swine Fever/epidemiology , African Swine Fever/virology , Swine , Sus scrofa/virology , Recombination, Genetic
2.
Front Microbiol ; 14: 1256090, 2023.
Article in English | MEDLINE | ID: mdl-37779710

ABSTRACT

Subtype H10 avian influenza viruses (AIV) are distributed worldwide in wild aquatic birds, and can infect humans and several other mammalian species. In the present study, we investigated the naturally mutated PB2 gene in A/aquatic bird/South Korea/SW1/2018 (A/SW1/18, H10N1), isolated from wild birds during the 2018-2019 winter season. This virus was originally found in South Korea, and is similar to isolates from mainland China and Mongolia. It had low pathogenicity, lacked a multi-basic cleavage site, and showed a binding preference for α2,3-linked sialic acids. However, it can infect mice, causing severe disease and lung pathology. SW1 was also transmitted by direct contact in ferrets, and replicated in the respiratory tract tissue, with no evidence of extrapulmonary spread. The pathogenicity and transmissibility of SW1 in mouse and ferret models were similar to those of the pandemic strain A/California/04/2009 (A/CA/04, H1N1). These factors suggest that subtype H10 AIVs have zoonotic potential and may transmit from human to human, thereby posing a potential threat to public health. Therefore, the study highlights the urgent need for closer monitoring of subtype H10 AIVs through continued surveillance of wild aquatic birds.

3.
Transbound Emerg Dis ; 69(5): e3297-e3304, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35648595

ABSTRACT

The ongoing coronavirus disease 2019 pandemic and its overlap with the influenza season lead to concerns over severe disease caused by the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infections. Using a Syrian hamster co-infection model with SARS-CoV-2 and the pandemic influenza virus A/California/04/2009 (H1N1), we found (a) more severe disease in co-infected animals, compared to those infected with influenza virus alone but not SARS-CoV-2 infection alone; (b) altered haematological changes in only co-infected animals and (c) altered influenza virus tropism in the respiratory tracts of co-infected animals. Overall, our study revealed that co-infection with SARS-CoV-2 and influenza virus is associated with altered disease severity and tissue tropism, as well as haematological changes, compared to infection with either virus alone.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype , Influenza, Human , Rodent Diseases , Animals , COVID-19/veterinary , Coinfection/veterinary , Cricetinae , Humans , Mesocricetus , SARS-CoV-2 , Viral Tropism
4.
Arch Virol ; 167(3): 871-879, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35137250

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Other coronaviruses (CoVs) can also infect humans, although the majority cause only mild respiratory symptoms. Because early diagnosis of SARS-CoV-2 is critical for preventing further transmission events and improving clinical outcomes, it is important to be able to distinguish SARS-CoV-2 from other SARS-related CoVs in respiratory samples. Therefore, we developed and evaluated a novel reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the genes encoding the spike (S) and membrane (M) proteins to enable the rapid identification of SARS-CoV-2, including several new circulating variants and other emerging SARS-like CoVs. By analysis of in vitro-transcribed mRNA, we established multiplex RT-qPCR assays capable of detecting 5 × 10° copies/reaction. Using RNA extracted from cell culture supernatants, our multiple simultaneous SARS-CoV-2 assays had a limit of detection of 1 × 10° TCID50/mL and showed no cross-reaction with human CoVs or other respiratory viruses. We also validated our method using human clinical samples from patients with COVID-19 and healthy individuals, including nasal swab and sputum samples. This novel one-step multiplex RT-qPCR assay can be used to improve the laboratory diagnosis of human-pathogenic CoVs, including SARS-CoV-2, and may be useful for the identification of other SARS-like CoVs of zoonotic origin.


Subject(s)
COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Feasibility Studies , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
Curr Microbiol ; 78(11): 3835-3842, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34546415

ABSTRACT

Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.


Subject(s)
Influenza A Virus, H3N8 Subtype , Influenza in Birds , Animals , Chickens , Female , Genes, Viral , Humans , Influenza in Birds/epidemiology , Poultry , Vietnam
6.
Viruses ; 12(1)2020 01 15.
Article in English | MEDLINE | ID: mdl-31952218

ABSTRACT

Since the initial detection of H5N1, a highly pathogenic avian influenza (HPAI) virus, in 1996 in China, numerous HPAI H5 lineages have been classified, and they continue to pose a threat to animal and human health. In this study, we developed a novel primer/probe set that can be employed to simultaneously detect pan-H5 HPAI and two clades, 2.3.2.1 and 2.3.4.4, of H5Nx viruses using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The sensitivity and specificity of these primer sets and probes were confirmed with a number of different subtypes of influenza virus and the H5-HA gene plasmid DNA. In particular, the multiplex RT-qPCR assay was successfully applied to the simultaneous detection of H5 HPAI and different virus clades in clinical field samples from a poultry farm. Therefore, this multiplex assay and a novel detection primer set and probes will be useful for the laboratory diagnosis and epidemiological field studies of different circulating H5 HPAI virus clades in poultry and migratory wild birds.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Poultry/virology , Animals , Animals, Wild/virology , Birds/virology , China , Genes, Viral , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Influenza in Birds/virology , Multiplex Polymerase Chain Reaction/methods , Multiplex Polymerase Chain Reaction/veterinary , Pathology, Molecular , Phylogeny , Real-Time Polymerase Chain Reaction/veterinary , Sensitivity and Specificity
7.
Sci Rep ; 9(1): 16661, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723156

ABSTRACT

Point-of-care tests (POCT) for pathogens are considered important for low-resource countries and facilities. Although lateral flow immunoassays (LFIA) have many advantages including speed and ease of use, their sensitivity is limited without specific equipment. Furthermore, their response cannot be enhanced through enzymatic reactions. Owing to these limitations, LFIAs have not yet been generally adopted as the standard protocol for in vitro analysis of infectious pathogens. We aimed to develop a novel pipetting-based immunoassay using a removable magnetic ring-coupled pipette tip. The "magnetic bead-capture antibody-targeted protein complex" was simply purified by pipetting and quantified by enzymatic colour development or using a lateral flow system. This pipetting-based immunoassay was applied to detect the nucleoprotein (NP) of the influenza A virus. Using an HRP-conjugated monoclonal antibody as a probe, the assay allowed for specific and sensitive detection. Furthermore, when this assay was applied exclusively for antigen capture in the lateral flow system, the limit of detection improved 100-fold and displayed greater sensitivity than the lateral flow system alone. Therefore, the pipetting-based immunoassay may be potentially used as a sensitive POCT to clinically detect a target antigen.


Subject(s)
Immunoassay/instrumentation , Immunologic Tests/methods , Influenza A virus/immunology , Influenza, Human/diagnosis , Metal Nanoparticles/chemistry , Point-of-Care Systems/standards , Gold/chemistry , Humans , Influenza A virus/isolation & purification , Influenza, Human/blood , Influenza, Human/virology , Limit of Detection
8.
Arch Virol ; 164(11): 2881-2885, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31456087

ABSTRACT

Aquatic birds are known to be a reservoir for the most common influenza A viruses (IAVs). In the annual surveillance program, we collected the feces of migratory birds for the detection of IAVs in South Korea in November 2016. A novel reassorted H3N3 avian influenza virus (AIV) containing genes from viruses of wild and domestic birds was identified and named A/aquatic bird/South Korea/sw006/2016(H3N3). The polymerase basic 2 (PB2) and non-structural (NS) genes of this isolate are most closely related to those of wild-bird-origin AIV, while the polymerase basic 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), and matrix (M) genes are most closely related to those of domestic-bird-origin AIV. A/aquatic bird/South Korea/sw006/2016 contains PA, NP, M, and NS genes were most closely related to those of AIV subtype H4 and PB2, PB1, and HA genes that are most closely related to those of AIV subtype H3N8, while the NA gene was most closely related to those of subtype H10, which was recently detected in humans in China. These results suggest that novel reassortment of AIV strains occurred due to interaction between wild and domestic birds. Hence, we emphasize the need for continued surveillance of avian influenza virus in bird populations.


Subject(s)
Genome, Viral/genetics , Influenza A Virus, H3N8 Subtype/genetics , Influenza in Birds/virology , Reassortant Viruses/genetics , Animals , Birds/virology , Influenza A Virus, H3N8 Subtype/isolation & purification , Neuraminidase/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Whole Genome Sequencing
9.
Virus Genes ; 53(4): 656-660, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28386784

ABSTRACT

Aquatic birds are known to harbor all the known influenza A viruses. In the winter of January 2016, we surveyed influenza A virus in the feces of migratory birds in South Korea. The novel re-assorted H11N9 avian influenza virus, which contains genes from avian influenza viruses of poultry and wild birds, was isolated. The polymerase basic 2 (PB2), polymerase basic 1 (PB1), hemagglutinin (HA), and nucleoprotein (NP) genes were most closely related to those of domestic duck-origin avian influenza viruses, while the non-structural (NS) gene was closely related to that of domestic goose-origin avian influenza virus. The polymerase acidic (PA), neuraminidase (NA), and matrix (M) genes were most similar to those of wild bird-origin avian influenza viruses. Our results suggested that the interaction between wild birds and domestic poultry could possibly create novel re-assorted avian influenza viruses circulating in wild birds.


Subject(s)
Anseriformes/virology , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza in Birds/virology , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Animals , Animals, Wild/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/classification , Influenza A virus/physiology , Phylogeny , Reassortant Viruses/classification , Republic of Korea
11.
Virus Genes ; 52(1): 142-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26757941

ABSTRACT

We isolated a serotype H3N2 influenza virus from a dog with severe respiratory distress in an animal clinic in South Korea in 2015 and characterized the sequences of its eight genes. The following seven genes were derived from canine influenza virus: PB2, PB1, HA, NP, NA, M, and NS. However, the PA gene was derived from avian H9N2 influenza virus that is circulating in poultry in Korea. These findings suggest that the continued surveillance of the influenza virus in dogs is warranted because humans have close contact with dogs, which may promote viral transmission.


Subject(s)
Dog Diseases/virology , Genes, Viral , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H9N2 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Animals , Dogs , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/classification , Orthomyxoviridae Infections/virology , Phylogeny , RNA-Dependent RNA Polymerase/genetics , Republic of Korea , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...