Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37508866

ABSTRACT

(1) Background: With an advanced technique, third-generation sequencing (TGS) provides services with long deoxyribonucleic acid (DNA) reads and super short sequencing time. It enables onsite mobile DNA sequencing solutions for enabling ubiquitous healthcare (U-healthcare) services with modern mobile technology and smart entities in the internet of living things (IoLT). Due to some strict requirements, 6G technology can efficiently facilitate communications in a truly intelligent U-healthcare IoLT system. (2) Research problems: conventional single user-server architecture is not able to enable group conversations where "multiple patients-server" communication or "patient-patient" communication in the group is required. The communications are carried out via the open Internet, which is not a trusted channel. Since heath data and medical information are very sensitive, security and privacy concerns in the communication systems have become extremely important. (3) Purpose: the author aims to propose a dynamic group-based patient-authenticated key distribution protocol for 6G-aided U-healthcare services enabled by mobile DNA sequencing. In the protocol, an authenticated common session key is distributed by the server to the patients. Using the key, patients in a healthcare group are allowed to securely connect with the service provider or with each other for specific purposes of communication. (4) Results: the group key distribution process is protected by a secure three-factor authentication mechanism along with an efficient sequencing-device-based single sign-on (SD-SSO) solution. Based on traceable information stored in the server database, the proposed approach can provide patient-centered services which are available on multiple mobile devices. Security robustness of the proposed protocol is proven by well-known verification tools and a detailed semantic discussion. Performance evaluation shows that the protocol provides more functionality and incurs a reasonable overhead in comparison with the existing works.

2.
Sensors (Basel) ; 21(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924024

ABSTRACT

Healthcare is now an important part of daily life because of rising consciousness of health management. Medical professionals can know users' health condition if they are able to access information immediately. Telemedicine systems, which provides long distance medical communication and services, is a multi-functional remote medical service that can help patients in bed in long-distance communication environments. As telemedicine systems work in public networks, privacy preservation issue of sensitive and private transmitted information is important. One of the means of proving a user's identity are user-controlled single sign-on (UCSSO) authentication scheme, which can establish a secure communication channel using authenticated session keys between the users and servers of telemedicine systems, without threats of eavesdropping, impersonation, etc., and allow patients access to multiple telemedicine services with a pair of identity and password. In this paper, we proposed a smartcard-based user-controlled single sign-on (SC-UCSSO) for telemedicine systems that not only remains above merits but achieves privacy preservation and enhances security and performance compared to previous schemes that were proved with BAN logic and automated validation of internet security protocols and applications (AVISPA).


Subject(s)
Privacy , Telemedicine , Communication , Computer Security , Confidentiality , Humans , Information Systems
3.
Sensors (Basel) ; 20(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198399

ABSTRACT

As the Internet of Things (IoT) has become prevalent, a massive number of logs produced by IoT devices are transmitted and processed every day. The logs should contain important contents and private information. Moreover, these logs may be used as evidences for forensic investigations when cyber security incidents occur. However, evidence legality and internal security issues in existing works were not properly addressed. This paper proposes an autonomous log storage management protocol with blockchain mechanism and access control for the IoT. Autonomous model allows sensors to encrypt their logs before sending it to gateway and server, so that the logs are not revealed to the public during communication process. Along with blockchain, we introduce the concept "signature chain". The integration of blockchain and signature chain provides efficient management functions with valuable security properties for the logs, including robust identity verification, data integrity, non-repudiation, data tamper resistance, and the legality. Our work also employs attribute-based encryption to achieve fine-grained access control and data confidentiality. The results of security analysis using AVSIPA toolset, GNY logic and semantic proof indicate that the proposed protocol meets various security requirements. Providing good performance with elliptic curve small key size, short BLS signature, efficient signcryption method, and single sign-on solution, our work is suitable for the IoT.

4.
Sensors (Basel) ; 20(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365543

ABSTRACT

The fifth generation (5G) mobile network delivers high peak data rates with ultra-low latency and massive network capacity. Wireless sensor network (WSN) in Internet of Thing (IoT) architecture is of prominent use in 5G-enabled applications. The electronic healthcare (e-health) system has gained a lot of research attention since it allows e-health users to store and share data in a convenient way. By the support of 5G technology, healthcare data produced by sensor nodes are transited in the e-health system with high efficiency and reliability. It helps in reducing the treatment cost, providing efficient services, better analysis reports, and faster access to treatment. However, security and privacy issues become big concerns when the number of sensors and mobile devices is increasing. Moreover, existing single-server architecture requires to store a massive number of identities and passwords, which causes a significant database cost. In this paper, we propose a three-factor fast authentication scheme with time bound and user anonymity for multi-server e-health systems in 5G-based wireless sensor networks. In our work, the three-factor authentication scheme integrating biometrics, password, and smart card ensures a high-security sensor-enabled environment for communicating parties. User anonymity is preserved during communication process. Besides, time bound authentication can be applied to various healthcare scenarios to enhance security. The proposed protocol includes fast authentication, which can provide a fast communication for participating parties. Our protocol is also designed with multi-server architecture to simplify network load and significantly save database cost. Furthermore, security proof and performance analysis results show that our proposed protocol can resist various attacks and bear a rational communication cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...