Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Int J Ophthalmol ; 17(3): 473-479, 2024.
Article in English | MEDLINE | ID: mdl-38721502

ABSTRACT

AIM: To establish a classification for congenital cataracts that can facilitate individualized treatment and help identify individuals with a high likelihood of different visual outcomes. METHODS: Consecutive patients diagnosed with congenital cataracts and undergoing surgery between January 2005 and November 2021 were recruited. Data on visual outcomes and the phenotypic characteristics of ocular biometry and the anterior and posterior segments were extracted from the patients' medical records. A hierarchical cluster analysis was performed. The main outcome measure was the identification of distinct clusters of eyes with congenital cataracts. RESULTS: A total of 164 children (299 eyes) were divided into two clusters based on their ocular features. Cluster 1 (96 eyes) had a shorter axial length (mean±SD, 19.44±1.68 mm), a low prevalence of macular abnormalities (1.04%), and no retinal abnormalities or posterior cataracts. Cluster 2 (203 eyes) had a greater axial length (mean±SD, 20.42±2.10 mm) and a higher prevalence of macular abnormalities (8.37%), retinal abnormalities (98.52%), and posterior cataracts (4.93%). Compared with the eyes in Cluster 2 (57.14%), those in Cluster 1 (71.88%) had a 2.2 times higher chance of good best-corrected visual acuity [<0.7 logMAR; OR (95%CI), 2.20 (1.25-3.81); P=0.006]. CONCLUSION: This retrospective study categorizes congenital cataracts into two distinct clusters, each associated with a different likelihood of visual outcomes. This innovative classification may enable the personalization and prioritization of early interventions for patients who may gain the greatest benefit, thereby making strides toward precision medicine in the field of congenital cataracts.

2.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697125

ABSTRACT

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Recombinational DNA Repair/drug effects , Casein Kinase II/genetics , Casein Kinase II/metabolism , Male , Mice , Animals , Female , Cell Line, Tumor , Middle Aged , Genetic Predisposition to Disease
3.
J Mass Spectrom ; 59(5): e5024, 2024 May.
Article in English | MEDLINE | ID: mdl-38605459

ABSTRACT

Yupingfeng granules (YPFG) is commonly used in the treatment of immunological diseases, inflammations, and pulmonary diseases. Several studies have found that chromones, flavones, and saponins were the major bioactive compounds of YPFG. However, few studies have reported accurate quantification methods of these compounds. This study aimed to establish a simple and rapid method by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine 15 bioactive compounds in YPFG. The experimental parameters including extraction methods, extraction solvents, extraction time, solid-liquid ratio, and LC-MS/MS condition were optimized. The linearity, precision, repeatability, stability, and recovery of the established method were evaluated. The contents of 15 bioactive compounds in seven batches of YPFG samples were analyzed by the established method and the results were compared with the values determined by HPLC. The optimal extraction condition was to extract 0.1 g of YPFG by ultrasound with 50 mL 50% ethanol for 30 min. A Waters ACQUITY UPLCBEH C18 column using the 0.1% formic acid water solution and acetonitrile as mobile phase with a gradient elution was applied to the chromatographic separation. The linearity, precision, repeatability, stability, and recovery of the method were within acceptable ranges. Compared with HPLC analysis methods in Chinese Pharmacopoeia and literature, the established method was faster, simpler, more accurate, and more reliable. The method of simultaneous determination of 15 components in YPFG by LC-MS might provide a basis for the study of the bioactive compounds and the improvement of the quality standard of YPFG.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
4.
Immunol Res ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687433

ABSTRACT

Esophageal cancer (EC) is the 9th most frequently diagnosed malignancy globally with unfavorable prognosis. Immune escape is one of the principal factors leading to poor survival, however, the mechanism underlying immune escape remains largely uninvestigated. The xenograft mouse model and EC cell-CD8+ cytotoxic T lymphocytes (CTLs) co-culture system were established. Immunohistochemistry, qRT-PCR or western blot were employed to detect the levels of long non-coding RNA (lncRNA) FOXP4-AS1, PD-L1, USP10 and other molecules. The abundance of T cells, cytokine production and cell apoptosis were monitored by flow cytometry. The viability of CTLs was assessed by Trypan blue staining. The binding between FOXP4-AS1 and USP10 was validated by RNA pull-down assay, and the interaction between USP10 and PD-L1, as well as the ubiquitination of PD-L1, were detected by co-immunoprecipitation. The elevation of FOXP4-AS1 in EC was associated with decreased CTL abundance, and upregulated PD-L1 facilitated CTL apoptosis in EC. FOXP4-AS1 accelerated EC tumor growth by decreasing the abundance of tumor infiltrating CTLs in vivo. FOXP4-AS1 inhibited the viability of CTLs and facilitated the cytotoxicity and exhaustion of CTLs. In Kyse 450 cell-CTL co-culture system, FOXP4-AS1 suppressed the viability and abundance of CTLs, and inhibited EC cell apoptosis via PD-L1. Mechanistically, FOXP4-AS1 regulated the ubiquitination of PD-L1 through deubiquitinating enzyme USP10. FOXP4-AS1 promoted CTL exhaustion and EC immune escape through USP10-stabilized PD-L1. HIGHLIGHTS: PD-L1 facilitated CD8+ T cell apoptosis in EC. Upregulated FOXP4-AS1 promoted EC tumor growth by inhibiting the viability and facilitating the cytotoxicity and exhaustion of tumor infiltrating CD8+ T cells. FOXP4-AS1 suppressed the viability and abundance of CD8+ T cells through USP10-mediated deubiquitination of PD-L1.

6.
iScience ; 27(1): 108731, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38299030

ABSTRACT

Immune suppression within tumor microenvironments (TME) have been implicated in limited efficacy of immune check point inhibitors (ICIs) against solid tumors. Down-regulated VentX expression in tumor associated macrophages (TAMs) underlies phagocytotic anergic phenotype of TAMs, which govern immunological state of TME. In this study, using a tumor immune microenvironment enabling model system (TIME-EMS) of non-small cell lung cancer (NSCLC), we found that PD-1 antibody modestly activates cytotoxic T lymphocytes (CTLs) within the NSCLC-TME but not the status of TIME. We showed that the restoration of VentX expression in TAMs reignites the phagocytotic function of TAMs, which in turn, transforms TIME, activates CTLs in a tumor-specific manner and promotes efficacy of PD-1 antibody against NSCLC but not toxicity on normal lung epithelial cells. Supported by in vivo data on NSG-PDX models of primary human NSCLC, our study revealed potential venues to promote the efficacy of ICI against solid tumors through VentX-based mechanisms.

7.
Materials (Basel) ; 17(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399195

ABSTRACT

This study focuses on the Medical Isotope Production Reactor (MIPR), an aqueous homogeneous reactor utilized for synthesizing medical isotopes like 99Mo. A pivotal aspect of MIPR's functionality involves the fuel solution's complex chemical interactions, particularly during reactor operation. These interactions result in the formation of precipitates, notably water filamentous uranium ore and columnar uranium ore, which can impact reactor performance. The research presented here delves into the reactions between liquid fuel uranyl nitrate and key radiolytic products, employing simulation calculations complemented by experimental validation. This approach facilitates the identification of uranium precipitate types and their formation conditions under operational reactor settings. Additionally, the article explores strategies to mitigate the formation of specific uranium precipitates, thereby contributing to the efficient and stable operation of MIPR.

8.
Eur J Med Chem ; 265: 116106, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38169271

ABSTRACT

Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms/pathology , Molecular Docking Simulation , Mutation , Protein Kinase Inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Amines/chemistry
9.
Anal Methods ; 16(3): 465-473, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38167895

ABSTRACT

Garlic is famous for its unique flavor and health benefits. An effective means of authenticating garlic's origin is through the implementation of the Protected Geographical Indication (PGI) scheme. However, the prevalence of fraudulent behavior raises concerns regarding the reliability of this system. In this study, garlic samples from six distinct production areas (G1: Cangshan garlic, G2: Qixian garlic, G3: Dali single clove garlic, G4: Jinxiang garlic, G5: Yongnian garlic, and G6: Badong garlic) underwent analysis using HS-GC-IMS. A total of 26 VOCs were detected in the samples. The differences in VOCs among the different garlic samples were visually presented in a two-dimensional topographic map and fingerprint map. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to demonstrate the capacity of the HS-GC-IMS method for effectively distinguishing garlic samples from different geographical sources. Further screening based on the p-value and VIP score threshold identified 12 different aroma substances, which can be utilized for the identification of garlic from different producing areas. The fusion of HS-GC-IMS with multivariate statistical analysis proved to be a rapid, intuitive, and efficient approach for identifying and categorizing garlic VOCs, offering a novel strategy for ascertaining garlic origin and ensuring quality control.


Subject(s)
Garlic , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Reproducibility of Results , Volatile Organic Compounds/analysis , Multivariate Analysis
10.
Food Res Int ; 175: 113734, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129045

ABSTRACT

Shrimp, renowned for its exceptional nutritional value, holds a pivotal position within the realm of aquatic products. The supplementation of extra oxygen to shrimp throughout the entire supply chain has found application within the commercial seafood market. In this study, a dual-platform metabolic analysis, coupled with multivariate data analysis, was employed to discern the impact of supplementary oxygen. Furthermore, this approach facilitated the construction of the post-mortem metabolic profile of shrimp during cold storage. A noticeable decrease of alcohols, ketones and carbohydrates which are related to the energy metabolism in shrimp has been found during cold storage, compared to the fresh shrimp. The degradation of nutritional amino acids was alleviated in shrimp after 4 h of extra oxygen supplement. Furthermore, a higher concentration of identified fatty acids, integral to lipid metabolism and functioning as flavor compounds was observed in shrimp subsequent to oxygen supplementation. Therefore, the additional oxygen supplementation exerted influence on multiple metabolic pathways, including nitrogen metabolism, amino acid and peptide metabolism, nucleotide metabolism, carbohydrate metabolism, and lipid metabolism. This study has constructed a comprehensive post-mortem metabolic profile of shrimp during cold storage, thereby establishing a theoretical foundation for the utilization of oxygen supplements in the preservation of seafood.


Subject(s)
Oxygen , Seafood , Seafood/analysis , Cryopreservation , Metabolome , Energy Metabolism
11.
Transl Oncol ; 40: 101843, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101175

ABSTRACT

Previous studies have demonstrated that carbohydrate sulfotransferase family proteins (CHSTs) play a crucial role in the extracellular matrix structural constituent and cancer progression, however, the effect of CHSTs on gastric cancer is still superficial. To investigate these, our study seeks to provide a comprehensive understanding of CHSTs' expression, immune infiltration, and prognostic implications in gastric cancer, utilizing data from the TCGA, GEO and GTEx databases. Furthermore, we conducted experimental validation to elucidate the role of CHST14 specifically in gastric cancer. Our findings suggest that most CHSTs were highly expressed in gastric cancer. Gene copy number variations further indicated prevalent CHSTs amplification in gastric cancer, pointing to its potential relevance in disease progression. Intriguingly, we noted strong positive correlations between most CHSTs and immune cell infiltration. Importantly, most members of CHSTs were related to OS and PFI with gastric cancer, with particular emphasis on CHST14 and CHST9. Multifactorial regression analysis indicates that CHST14 is an independent prognostic factor influencing the overall survival of gastric cancer patients. In further experimental validation, our results demonstrate elevated expression of CHST14 in gastric cancer, and knocking down CHST14 inhibits gastric cancer cell proliferation, invasion, migration and EMT. Additionally, CHST14 may exert its function through the regulation of the Wnt pathway. In summary, our study comprehensively analyzes the hitherto undescribed role of CHSTs in gastric cancer through the analysis of multi-omics data. Importantly, we identify CHST14 as a pivotal promoter in the malignant progression of gastric cancer, offering potential targets for gastric cancer therapy.

12.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067167

ABSTRACT

Transforming growth factor-beta 2 (TGF-ß2), an important member of the TGF-ß family, is a secreted protein that is involved in many biological processes, such as cell growth, proliferation, migration, and differentiation. TGF-ß2 had been thought to be functionally identical to TGF-ß1; however, an increasing number of recent studies uncovered the distinctive features of TGF-ß2 in terms of its expression, activation, and biological functions. Mice deficient in TGF-ß2 showed remarkable developmental abnormalities in multiple organs, especially the cardiovascular system. Dysregulation of TGF-ß2 signalling was associated with tumorigenesis, eye diseases, cardiovascular diseases, immune disorders, as well as motor system diseases. Here, we provide a comprehensive review of the research progress in TGF-ß2 to support further research on TGF-ß2.


Subject(s)
Transforming Growth Factor beta2 , Transforming Growth Factors , Mice , Animals , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism , Cell Differentiation , Cell Cycle , Cell Proliferation
13.
J Fluoresc ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047988

ABSTRACT

Fluoride is both necessary and potentially harmful in excessive amounts, making its detection crucial. Fluorescent probes provide a sensitive and selective means for this purpose. In this study, we developed and synthesized a fluorescent probe for LDT using phenothiazine derivatives and aryl vinyl nitrile. Initially non-fluorescent, the probe undergoes a Si-O bond breakage in the presence of fluoride ions, resulting in the formation of a larger conjugated system and subsequent fluorescence emission. The probe exhibits superior selectivity and sensitivity towards fluoride ions, with a detection limit of 0.35 µM. Moreover, cellular imaging experiments demonstrated the probe's effectiveness in recognizing fluoride ions within HepG2 cells.

14.
Purinergic Signal ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153612

ABSTRACT

More and more studies have revealed that P2 purinergic receptors play a key role in the progression of colorectal cancer (CRC). P2X and P2Y purinergic receptors can be used as promoters and regulators of CRC and play a dual role in the progression of CRC. CRC microenvironment is rich in ATP and its cleavage products (ADP, AMP, Ado), which act as activators of P2X and P2Y purinergic receptors. The activation of P2X and P2Y purinergic receptors regulates the progression of CRC mainly by regulating the function of immune cells and mediating different signal pathways. In this paper, we focus on the specific mechanisms and functional roles of P2X7, P2Y12, and P2Y2 receptors in the growth and progression of CRC. The antagonistic effects of these selective antagonists of P2X purinergic receptors on the growth, invasion, and metastasis of CRC were further discussed. Moreover, different studies have reported that P2X7 receptor can be used as an effective predictor of patients with CRC. All these indicate that P2 purinergic receptors are a key regulator of CRC. Therefore, antagonizing P2 purinergic receptors may be an innovative treatment for CRC.

15.
Curr Res Food Sci ; 7: 100621, 2023.
Article in English | MEDLINE | ID: mdl-38021256

ABSTRACT

Chlorella pyrenoidosa (C. pyrenoidosa) has been widely used in commercial food and feed production for numerous years. Its high protein content and cost-effectiveness make it an attractive source of novel protein. With a focus on sustainable development and the search for green natural products, current research is dedicated to maximizing the utilization of C. pyrenoidosa protein (CPP) and peptide. Various techniques, such as the use of ionic liquids, freeze-thawing, ultrasonication, enzyme digest, microwaving are employed in the extraction of CPP. The extracted CPP has demonstrated antioxidant, anti-inflammatory, and bacteriostatic properties. It can also stimulate immune regulation, prevent cardiovascular disease, protect red blood cells, and even be used in wastewater treatment. Furthermore, CPP has shown some potential in combating obesity. Additionally, CPP is being explored in three-dimensional (3D) printing applications, particularly for the creation of biological scaffolds. It is also anticipated to play a role in 3D food printing. This review aimed to supply a comprehensive summary of CPP and C. pyrenoidosa peptide extraction methods, their functions, and practical applications in various industries. By doing so, it seeks to underpin subsequent research efforts, highlight current research limitations, and identify future research directions in this field.

16.
Ann Med Surg (Lond) ; 85(11): 5720-5723, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37915626

ABSTRACT

Introduction and importance: The coronavirus disease 2019 (COVID-19) was first reported in Wuhan, Hubei Province, China. It mainly involves the respiratory system, causing fever, cough, chest tightness, and other symptoms. However, when combined with other common or rare diseases, such as appendicitis and intestinal tuberculosis (TB), it can cause other systemic lesions, thus making the original disease lose its specific clinical manifestations. This case highlights the importance of early identification and clinical precision medicine diagnosis and treatment. Case presentation: A young woman presented with intermittent pain and discomfort in the right lower quadrant. Ultrasonography suggested appendicitis with a peripheral abscess. The nucleic acid test of COVID-19 was positive, and the chest computed tomography scan showed pulmonary involvement. She was sent for surgery. Postoperative body temperature increased regularly, and the TB T-cell test was positive. Clinical discussion: Multiple infections caused by common bacteria, pandemic virus, and specific mycobacterium TB cause a series of nonspecific clinical manifestations, which brings challenges to clinical diagnosis and treatment. Therefore, when facing a complex infection case, the authors should consider the possibility of multiple infections and give targeted treatment for the pathogens. Conclusions: During the epidemic of COVID-19, the incidence of intestinal TB is relatively low, which is easy to be overlooked and misdiagnosed, especially in the case of appendicitis. Therefore, clinicians must be highly vigilant in the diagnosis process to avoid missed diagnosis or misdiagnosis, so as to provide the best diagnosis and treatment plan.

17.
Int J Ophthalmol ; 16(10): 1682-1691, 2023.
Article in English | MEDLINE | ID: mdl-37854365

ABSTRACT

AIM: To explore the hotspots and frontiers of genetic research on pediatric cataracts. METHODS: Global publications from 2013 to 2022 related to genes in pediatric cataracts were extracted from the Web of Science Core Collection, and were analyzed in terms of the publication counts, countries, journals, authors, keywords, cited references, subject categories, and the underlying hotspots and frontiers. RESULTS: Totally 699 publications were included in the final analysis. The predominant actors were identified, with China (n=240) and PLoS One (n=33) being the most productive country and journal respectively. The research hotspots extracted from keywords were crystallin gene mutations, pathogenicity evaluation, phenotypes of ocular and neurodevelopmental abnormalities, genes encoding membrane proteins, and diagnosis of multisystemic disorders. The co-cited articles formed 10 clusters of research topics, including FYCO1 (56 items), mutation screening (43 items), gap junction (29 items), the Warburg Micro syndrome (29 items), ephrin-A5 (28 items), novel mutation (24 items), eye development and function (22 items), cholestanol (7 items), OCRL (6 items), and pathogenicity prediction (3 items). The research frontiers were FYCO1, ephrin-A5, and cholestanol. Cell biology showed the strongest bridging effects among different disciplines in the field (betweenness centrality=0.44). CONCLUSION: With the progress in next-generation sequencing and multidisciplinary collaboration, genetic research on pediatric cataracts broadens the knowledge scope of the crystalline lens, as well as other organs and systems, shedding light on the molecular mechanisms of systemic diseases. Cell biology may integrate multidisciplinary content to address cutting-edge issues in the field.

18.
Se Pu ; 41(10): 843-852, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875407

ABSTRACT

Given continuous developments in industrial and scientific research, the separation and analysis of complex systems with high sensitivity, throughput, and selectivity is facing new challenges. Chromatography plays an irreplaceable role in separation science and is widely applied in environmental monitoring, pharmaceutical analysis, and food safety. Owing to their outstanding advantages, such as high loading capacity, precise quantification, and good reproducibility, chromatographic separation techniques based on various retention mechanisms have been utilized to detect different analytes. The stationary phase is the core material of chromatographic columns and has an extremely important influence on their separation performance. The selectivity and efficiency of separation largely depend on the chromatographic stationary phase. However, traditional stationary phases, such as silicon-based matrices, are characterized by complex preparation processes, poor permeability, large mass transfer resistance, and a narrow pH range. In addition, polymer matrices show poor mechanical stability and susceptibility to swelling, which limit their applications in the field of separation. Therefore, the development of novel stationary phases with the advantages of traditional stationary phases has become a research emphasis in the field of analytical science in efforts to meet separation requirements under different environments. Various stationary phases based on novel porous materials, such as metal organic frameworks (MOFs), porous organic cages (POCs), and covalent organic frameworks (COFs), are used for chromatographic separation. As mesh crystalline porous materials, MOFs have the advantages of a large surface area, adjustable structure, and easy functionalization; thus, they are widely used as chromatographic stationary phases in reverse-phase chromatography, hydrophilic-mode chromatography, mixed-mode chromatography, and other separation modes. However, because the pore size of MOFs is small and most MOFs demonstrate poor chemical stability under acidic or alkaline conditions, their applications in chromatographic separation are greatly limited. COFs are porous, crystalline polymer materials composed of light elements (H, O, C, N, B, and Si) connected via covalent bonds. Their advantages include a low density, large specific surface area, high porosity, good chemical and thermal stability, regular pores, and adjustable pore sizes. Because of their unique structures and properties, COFs are widely used in many fields such as catalysis, enrichment, gas capture, and sensing. COF materials are also suitable for separation analysis and considered ideal materials for novel chromatographic stationary phases. This review summarizes the latest research progress on the preparation and applications of COF-based chromatographic stationary phases over the past five years. First, the preparation of COF-based stationary phases (SiO2@COFs stationary phase, COFs monolithic stationary phase, pure COFs stationary phase and COFs-coated stationary phase) is introduced. The latest applications of COF-based stationary phases in the separation of organic compounds, isomers, and chiral compounds are then described in detail. Finally, the future development trends and challenges of chromatographic stationary phases based on COFs are discussed to provide new ideas for the future design and development of novel chromatographic stationary phases based on COFs.

19.
Medicine (Baltimore) ; 102(38): e35225, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37746979

ABSTRACT

RATIONALE: Ghost cell odontogenic carcinoma is a rare malignant odontogenic carcinoma characterized by the presence of ghost cells. It has a nonspecific clinical and radiographic presentation and can be locally destructive and invasive, sometimes with distant metastases. However, no effective systemic therapy is currently recommended for such patients. PATIENT CONCERNS: The patient has been unable to undergo surgery or radiotherapy again. Therefore, he was referred to our department for a more aggressive, multimodal systematic treatment program. DIAGNOSES: The histopathological examination was morphologically suggestive of ghost cell odontogenic carcinomas. INTERVENTIONS: We report a case of locally invasive primary inoperable odontogenic shadow cell carcinoma in a 31-year-old Chinese man who achieved treatment with Toripalimab and chemotherapy, followed by Toripalimab maintenance therapy after 6 cycles. OUTCOMES: He achieved partial remission after treatment. The quality of life significantly improved after treatment. There were no grade 3/4 treatment-related adverse events during treatment. LESSONS: This case presented that Toripalimab and chemotherapy may be a safe and effective systemic therapy for ghost cell odontogenic carcinoma.


Subject(s)
Carcinoma , Jaw Neoplasms , Mouth Neoplasms , Odontogenic Tumors , Male , Humans , Adult , Quality of Life , Odontogenic Tumors/diagnosis , Odontogenic Tumors/therapy
20.
Bioorg Chem ; 140: 106792, 2023 11.
Article in English | MEDLINE | ID: mdl-37633129

ABSTRACT

A novel series of 4-arylamino-pyrimidine derivatives were designed and synthesized as focal adhesion kinase (FAK) inhibitors under the strategy of structure-based drug design. Most compounds performed excellent anti-proliferative activity against U87-MG cells. Especially, compounds 8d and 9b revealed the highest activity with IC50 values of 0.975 µM and 1.033 µM, which was much potent than the positive control TAE-226 (IC50 = 2.659 µM). On the other hand, the total 27 compounds exhibited low inhibition against human normal 2BS cells. Moreover, compounds 8d and 9b showed outstanding activity against FAK with IC50 values of 0.2438 nM and 0.2691 nM, which was very close to TAE-226 (IC50 = 0.1390 nM). Further studies proved that compounds 8d and 9b could induce U87-MG cell early apoptosis and arrest the cell at G2/M phase. The action mechanism indicated that they could significantly inhibit U87-MG cell clone formation, cell migration, and FAK phosphorylation. Molecular docking and molecular dynamics simulation investigations suggested that compounds 8d and 9b could firmly occupy the ATP binding site of FAK. These findings supported the further researches of compounds 8d and 9b as FAK inhibitors for antitumor drug discovery.


Subject(s)
Antihypertensive Agents , Apoptosis , Humans , Focal Adhesion Protein-Tyrosine Kinases , Molecular Docking Simulation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...