Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 454-455: 78-92, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24725934

ABSTRACT

The role of Group X secreted phospholipase A2 (GX-sPLA2) during influenza infection has not been previously investigated. We examined the role of GX-sPLA2 during H1N1 pandemic influenza infection in a GX-sPLA2 gene targeted mouse (GX(-/-)) model and found that survival after infection was significantly greater in GX(-/-) mice than in GX(+/+) mice. Downstream products of GX-sPLA2 activity, PGD2, PGE2, LTB4, cysteinyl leukotrienes and Lipoxin A4 were significantly lower in GX(-/-) mice BAL fluid. Lung microarray analysis identified an earlier and more robust induction of T and B cell associated genes in GX(-/-) mice. Based on the central role of sPLA2 enzymes as key initiators of inflammatory processes, we propose that activation of GX-sPLA2 during H1N1pdm infection is an early step of pulmonary inflammation and its inhibition increases adaptive immunity and improves survival. Our findings suggest that GX-sPLA2 may be a potential therapeutic target during influenza.


Subject(s)
Group X Phospholipases A2/deficiency , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Animals , B-Lymphocytes/immunology , Disease Models, Animal , Gene Expression Profiling , Group X Phospholipases A2/genetics , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microarray Analysis , Survival Analysis , T-Lymphocytes/immunology
2.
Virology ; 448: 91-103, 2014 Jan 05.
Article in English | MEDLINE | ID: mdl-24314640

ABSTRACT

Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.


Subject(s)
Bronchi/cytology , Cytokines/genetics , Epithelial Cells/immunology , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/immunology , Membrane Fusion , Bronchi/immunology , Cells, Cultured , Cytokines/immunology , Epithelial Cells/virology , Humans , Inflammation Mediators/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/virology , Pandemics
3.
PLoS One ; 7(6): e38214, 2012.
Article in English | MEDLINE | ID: mdl-22679491

ABSTRACT

Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data.


Subject(s)
Biomarkers/blood , Influenza A Virus, H1N1 Subtype/pathogenicity , Interleukin-6/blood , Orthomyxoviridae Infections/blood , Animals , Female , Influenza A Virus, H1N1 Subtype/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pandemics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...