Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Nutr ; 38(2): 162-170, 2019 02.
Article in English | MEDLINE | ID: mdl-30211662

ABSTRACT

OBJECTIVE: Colon cancer occupies the third place in incidence worldwide; eating habits, in particular, consumption of hypercaloric diets, are relevant in its etiopathogenesis. On the other hand, foods can also modulate carcinogenesis: for example, proteins, which when hydrolyzed release peptides with biological activities, and legumes, especially, chickpea, represent a good source of hydrolysates. The objective of this work was to verify the inhibitory effect of chickpea hydrolyzed protein on azoxymethane (AOM)-induced carcinogenesis in mice fed a hypercaloric diet. METHODS: We hydrolyzed chickpea protein by pepsin, pancreatin, and a combined pepsin-pancreatin system, to test its anticarcinogenic and hypercaloric activity in mice that had consumed a hypercaloric diet or a normal diet but were injected with azoxymethane (AOM). RESULTS: A concentrate (70% proteins) was obtained from chickpea seeds (18.5% proteins), and extensive hydrolysates were obtained at 15 minutes, in all tested enzyme systems. The greatest activity was evidenced in the hydrolysates obtained with pepsin-pancreatin at 90 minutes. Animals that consumed the hypercaloric diet had a higher concentration of cholesterol and a higher atherogenic index, which were significantly reduced with the administration of chickpea protein hydrolysates with a dose-response effect (10, 20, or 30 mg/kg), whereas no effect was observed in animals that consumed the normal diet. In animals given AOM, aberrant crypts were observed, at a higher rate in animals that consumed the hypercaloric diet; with the consumption of hydrolysates by the animals that consumed either diet, the number of aberrant crypts was reduced with the 3 doses tested, and the effect was better in those animals fed the hypercaloric diet. The best effect in all tests was with 30 mg/kg body weight. CONCLUSION: The consumption of chickpea protein hydrolysates might confer a protective effect against colon carcinogenesis.


Subject(s)
Carcinogenesis/drug effects , Cicer/chemistry , Protective Agents/pharmacology , Protein Hydrolysates/pharmacology , Seeds/chemistry , Animals , Azoxymethane , Carcinogenesis/chemically induced , Colon/drug effects , Colonic Neoplasms/etiology , Diet/adverse effects , Diet/methods , Disease Models, Animal , Energy Intake , Male , Mice
2.
Nutr Cancer ; 68(5): 856-64, 2016 07.
Article in English | MEDLINE | ID: mdl-27282923

ABSTRACT

In recent years, the consumption of vegetal-source proteins has been studied to determine their preventing effect on the development of several chronic diseases. The initial purpose of this report was to determine the effect of a hypercholesterolemic diet (HCD) given to mice, alone or with azoxymethane (AOM), on various obesity biochemical biomarkers, as well as on the induction of colon aberrant crypts (aberrant crypt foci; ACF). At the end of the 5-week assay, animals fed the HCD showed alterations in the level of total cholesterol, high- and low-density lipoproteins, and in the Atherogenic Index; besides, a significant elevation was observed in the number of ACF. Our second aim was to examine the effect of a Faba Protein Hydrolyzate (FPH) on mice fed the HCD. We first obtained protein hydrolyzates from the seeds of Vicia faba, determined the in vitro antioxidant potential with two tests, and, subsequently, evaluated the effect on obesity biomarkers and on the number of ACF. In the first case, we found that, generally, the best protective effect was obtained with the low dose of FPH (10 mg/kg) administered to animals fed the HCD, and injected AOM. With respect to the number of ACF, we observed that this dose was more effective, inhibiting such lesions to almost the level determined for the normocholesterolemic diet (NCD). Therefore, our results demonstrated the relevance of a HCD to develop anomalies in obesity biomarkers in mouse, as well as to increase the number of precarcinogenic lesions. Our results also showed a protective response with the administration of FPH, particularly with a specific dose, suggesting the need for extending research on the matter by widening the spectra of doses, in order to clearly define its potential to counteract the damage induced by the HCD, as well as to confirm if antioxidation in mice was involved in such an effect.


Subject(s)
Anticarcinogenic Agents/pharmacology , Protein Hydrolysates/pharmacology , Vicia faba/chemistry , Aberrant Crypt Foci/drug therapy , Aberrant Crypt Foci/etiology , Animals , Anticarcinogenic Agents/analysis , Antioxidants/analysis , Antioxidants/pharmacology , Azoxymethane/administration & dosage , Azoxymethane/adverse effects , Cholesterol, Dietary/administration & dosage , Cholesterol, Dietary/adverse effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/etiology , Diet , Disease Models, Animal , Male , Mice , Mice, Inbred ICR , Plant Extracts/analysis , Plant Extracts/pharmacology , Protein Hydrolysates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...