Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rev Mar Sci ; 16: 25-53, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37669566

ABSTRACT

In the outer solar system, a growing number of giant planet satellites are now known to be abodes for global oceans hidden below an outer layer of ice. These planetary oceans are a natural laboratory for studying physical oceanographic processes in settings that challenge traditional assumptions made for Earth's oceans. While some driving mechanisms are common to both systems, such as buoyancy-driven flows and tides, others, such as libration, precession, and electromagnetic pumping, are likely more significant for moons in orbit around a host planet. Here, we review these mechanisms and how they may operate across the solar system, including their implications for ice-ocean interactions. Future studies should continue to advance our understanding of each of these processes as well as how they may act together in concert. This interplay also has strong implications for habitability as well as testing oceanic hypotheses with future missions.


Subject(s)
Ice Cover , Moon , Oceanography
2.
Surv Geophys ; 43(1): 229-261, 2022.
Article in English | MEDLINE | ID: mdl-35535259

ABSTRACT

Understanding fluid flows in planetary cores and subsurface oceans, as well as their signatures in available observational data (gravity, magnetism, rotation, etc.), is a tremendous interdisciplinary challenge. In particular, it requires understanding the fundamental fluid dynamics involving turbulence and rotation at typical scales well beyond our day-to-day experience. To do so, laboratory experiments are fully complementary to numerical simulations, especially in systematically exploring extreme flow regimes for long duration. In this review article, we present some illustrative examples where experimental approaches, complemented by theoretical and numerical studies, have been key for a better understanding of planetary interior flows driven by some type of mechanical forcing. We successively address the dynamics of flows driven by precession, by libration, by differential rotation, and by boundary topography.

3.
Nat Phys ; 16(6): 695-700, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32514283

ABSTRACT

Jupiter's dynamics shapes its cloud patterns but remains largely unknown below this natural observational barrier. Unraveling the underlying three-dimensional flows is thus a primary goal for NASA's ongoing Juno mission that was launched in 2011. Here, we address the dynamics of large Jovian vortices using laboratory experiments complemented by theoretical and numerical analyses. We determine the generic force balance responsible for their three-dimensional pancake-like shape. From this, we define scaling laws for their horizontal and vertical aspect ratios as a function of the ambient rotation, stratification and zonal wind velocity. For the Great Red Spot in particular, our predicted horizontal dimensions agree well with measurements at the cloud level since the Voyager mission in 1979. We additionally predict the Great Red Spot's thickness, inaccessible to direct observation: it has surprisingly remained constant despite the observed horizontal shrinking. Our results now await comparison with upcoming Juno observations.

4.
Phys Rev Lett ; 120(24): 244505, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29957013

ABSTRACT

We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.

5.
Phys Rev Lett ; 119(3): 034502, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777612

ABSTRACT

The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

6.
Article in English | MEDLINE | ID: mdl-26172801

ABSTRACT

Water's density maximum at 4°C makes it well suited to study internal gravity wave excitation by convection: an increasing temperature profile is unstable to convection below 4°C, but stably stratified above 4°C. We present numerical simulations of a waterlike fluid near its density maximum in a two-dimensional domain. We successfully model the damping of waves in the simulations using linear theory, provided we do not take the weak damping limit typically used in the literature. To isolate the physical mechanism exciting internal waves, we use the spectral code dedalus to run several simplified model simulations of our more detailed simulation. We use data from the full simulation as source terms in two simplified models of internal-wave excitation by convection: bulk excitation by convective Reynolds stresses, and interface forcing via the mechanical oscillator effect. We find excellent agreement between the waves generated in the full simulation and the simplified simulation implementing the bulk excitation mechanism. The interface forcing simulations overexcite high-frequency waves because they assume the excitation is by the "impulsive" penetration of plumes, which spreads energy to high frequencies. However, we find that the real excitation is instead by the "sweeping" motion of plumes parallel to the interface. Our results imply that the bulk excitation mechanism is a very accurate heuristic for internal-wave generation by convection.

SELECTION OF CITATIONS
SEARCH DETAIL
...