Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 185: 116067, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33086458

ABSTRACT

Land-based micropollutants are the largest pollution source of the marine environment acting as the major large-scale chemical sink. Despite this, there are few comprehensive datasets for estimating micropollutant fluxes released to the sea from river mouths. Hence, their dynamics and drivers remain poorly understood. Here, we address this issue by continuous measurements throughout the Rhône River basin (∼100,000 km2) of 1) particulate micropollutant concentrations (persistant organic micropollutants: polychlorobiphenyls [PCBi] and polycyclic aromatic hydrocarbons [PAHs]; emerging compounds: glyphosate and aminomethylphosphonic acid [AMPA]; and trace metal elements [TME]), 2) suspended particulate matter [SPM], and 3) water discharge. From these data, we computed daily fluxes for a wide range of micropollutants (n = 29) over a long-term period (2008-2018). We argue that almost two-thirds of annual micropollutant fluxes are released to the Mediterranean Sea during three short-term periods over the year. The watershed hydro-climatic heterogeneity determines this dynamic by triggering seasonal floods. Unexpectedly, the large deficit of the inter-annual monthly micropollutant fluxes inputs (tributaries and the Upper Rhône River) compared to the output (Beaucaire station) claims for the presence of highly contaminated missing sources of micropollutants in the Rhône River watershed. Based on a SPM-flux-averaged micropollutant concentrations mass balance of the system and the estimates of the relative uncertainty of the missing sources concentration, we assessed their location within the Rhône River catchment. We assume that the potential missing sources of PAHs, PCBi and TME would be, respectively, the metropolitan areas, the alluvial margins of the Rhône River valley, and the unmonitored Cevenol tributaries.


Subject(s)
Rivers , Water Pollutants, Chemical , Environmental Monitoring , Geologic Sediments , Mediterranean Sea , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 658: 457-473, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30579203

ABSTRACT

Long term and high resolution data on water discharge, suspended particulate matter (SPM) and contaminant concentrations in rivers are required for a better understanding of particulate transfers from the continental areas to the seas. The aim of this study was to provide a novel estimation of annual fluxes of SPM and related pollutants in the Rhône River from Lake Geneva to the Mediterranean Sea by combining high frequency or time-integrative monitoring and novel relations between SPM concentration (Cs) and water discharge (Q). At six stations of the Rhône Sediment Observatory (OSR), SPM fluxes were calculated over the 2000-2016 period by combining observational data and Cs-Q relations. Monthly average concentrations of mercury (Hg) and PCB 180 were obtained by analysis of SPM samples collected in time integrative particle traps between 2011 and 2016. These pollutants were selected because of the well documented contamination of the Rhône watershed by these substances. Inter-annual fluxes at the Rhône River outlet averaged 6.6 Mt. yr-1 for SPM, 572 kg yr-1 for Hg and 14 kg yr-1 for PCB 180. The Isère and Durance tributaries were found to be the main contributors of SPM fluxes. Annual SPM budgets were not balanced, suggesting deposition, remobilization of bottom sediments and/or contributions from non-monitored tributaries. The SPM sampled at the outlet was more contaminated than the combined SPM inputs from the monitored tributaries, suggesting that intermediate sources of contamination were not captured in the budget.

SELECTION OF CITATIONS
SEARCH DETAIL
...