Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 109(43): 20454-62, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16853647

ABSTRACT

The progressive activation of a Pd(2 wt %)/gamma-alumina catalyst under the reaction conditions of catalytic combustion of methane (CCM) was studied. The reasons of this activation were investigated by XPS, CO-chemisorption, and HR-TEM. The removal of carbon from the surface cannot explain the observed activation process. Sintering of the palladium particles was detected but this parameter alone does not fully explain the activation process of the catalyst. HR-TEM imaging evidences (i) that PdO is present both in the fresh and the active catalyst and (ii) that the PdO nanoparticles sinter and restructure (surface roughening) during the reaction. Development of preferential faces was not observed. It is suggested that this restructuring may be responsible for the activation process by facilitating the formation of an active oxygen layer on the PdO surface. CCM on Pd/gamma-Al(2)O(3) depends on the thermal history of the catalyst and is a structure-sensitive reaction.

2.
Biochemistry ; 23(26): 6858-62, 1984 Dec 18.
Article in English | MEDLINE | ID: mdl-6529585

ABSTRACT

2-Keto-4,4,4-trifluorobutyl phosphate (HTFP) was prepared from 3,3,3-trifluoropropionic acid. HTFP acts as an irreversible inhibitor of rabbit muscle aldolase: the loss of activity was time dependent and the inactivation followed a pseudo-first-order process. Values of 1.4 mM for the dissociation constant and 2.3 X 10(-2) s-1 for the reaction rate constant were determined. The kinetic constants do not depend on the enzyme concentration. No effect of thiols on the inactivation rate was detected. Only 1-2 mol of fluoride ions was liberated per inactivated subunit, indicative of a low partition ratio. Dihydroxyacetone phosphate protected the enzyme against the inactivation in a competitive manner, and glyceraldehyde 3-phosphate protected as if it formed a condensation product with HTPF. 5,5'-Dithiobis(2-nitrobenzoic acid) thiol titration showed the loss of one very reactive thiol group per enzyme subunit after inactivation. All those observations seem to agree with a suicide substrate inactivation of aldolase by HTPF.


Subject(s)
Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Animals , Dihydroxyacetone Phosphate/pharmacology , In Vitro Techniques , Kinetics , Muscles/enzymology , Organophosphates/pharmacology , Rabbits , Sulfhydryl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL