Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(51): eabj9786, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910504

ABSTRACT

Erbium ions embedded in crystals have unique properties for quantum information processing, because of their optical transition at 1.5 µm and of the large magnetic moment of their effective spin-1/2 electronic ground state. Most applications of erbium require, however, long electron spin coherence times, and this has so far been missing. Here, by selecting a host matrix with a low nuclear-spin density (CaWO4) and by quenching the spectral diffusion due to residual paramagnetic impurities at millikelvin temperatures, we obtain a 23-ms coherence time on the Er3+ electron spin transition. This is the longest Hahn echo electron spin coherence time measured in a material with a natural abundance of nuclear spins and on a magnetically sensitive transition. Our results establish Er3+:CaWO4 as a potential platform for quantum networks.

2.
Magn Reson (Gott) ; 1(2): 315-330, 2020.
Article in English | MEDLINE | ID: mdl-37904823

ABSTRACT

We report measurements of electron-spin-echo envelope modulation (ESEEM) performed at millikelvin temperatures in a custom-built high-sensitivity spectrometer based on superconducting micro-resonators. The high quality factor and small mode volume (down to 0.2 pL) of the resonator allow us to probe a small number of spins, down to 5×102. We measure two-pulse ESEEM on two systems: erbium ions coupled to 183W nuclei in a natural-abundance CaWO4 crystal and bismuth donors coupled to residual 29Si nuclei in a silicon substrate that was isotopically enriched in the 28Si isotope. We also measure three- and five-pulse ESEEM for the bismuth donors in silicon. Quantitative agreement is obtained for both the hyperfine coupling strength of proximal nuclei and the nuclear-spin concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...