Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Animals (Basel) ; 12(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35158552

ABSTRACT

This study aimed to investigate the impact of decreased crude protein (CP) levels (by 2% units) or acidifying diets (by adding 10 g benzoic acid/kg diet in combination with replacing a part of CaCO3 by about 10 g Ca-formate/kg diet) on urine, feces and manure composition and ammonia emissions from growing and finishing pig houses. Yorkshire x F1(Landrace x Yorkshire) pigs (n = 576) with an initial body weight of 24.9 ± 3.4 kg were randomly allocated to four treatments of (i) a control diet with normal protein content and no acidifying components added; (ii) a diet with 2% units CP reduction; (iii) a diet with an acidifying effect on the manure; (iv) or a diet consisting of a combination of diet (ii) and (iii). Pigs were housed in four mechanically ventilated and temperature-controlled rooms. Results showed that decreasing the dietary CP levels by 2% units reduced the ammonia emission from the floor by 46% (p = 0.06) and from the pig house by 31% (p = 0.08). Decreased CP diets reduced the total N in feces and in manure and NH4-N in the manure, as well as the ammonia concentration at 1 cm and 10 cm above the manure surface (p < 0.05). However, acidifying diets failed to reduce ammonia emissions from the floor and the pig house (p > 0.05). Reducing dietary crude protein is, therefore, a solution to reducing ammonia emissions from pig houses.

3.
Asian-Australas J Anim Sci ; 30(7): 1054-1060, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28335096

ABSTRACT

OBJECTIVE: This study was aimed at evaluating effects of cattle breed resources and alternative mixed-feeding practices on meat productivity and emission intensities from household farming systems (HFS) in Daklak Province, Vietnam. METHODS: Records from Local Yellow×Red Sindhi (Bos indicus; Lai Sind) and 1/2 Limousin, 1/2 Drought Master, and 1/2 Red Angus cattle during the growth (0 to 21 months) and fattening (22 to 25 months) periods were used to better understand variations on meat productivity and enteric methane emissions. Parameters were determined by the ruminant model. Four scenarios were developed: (HFS1) grazing from birth to slaughter on native grasses for approximately 10 h plus 1.5 kg dry matter/d (0.8% live weight [LW]) of a mixture of guinea grass (19%), cassava (43%) powder, cotton (23%) seed, and rice (15%) straw; (HFS2) growth period fed with elephant grass (1% of LW) plus supplementation (1.5% of LW) of rice bran (36%), maize (33%), and cassava (31%) meals; and HFS3 and HFS4 computed elephant grass, but concentrate supplementation reaching 2% and 1% of LW, respectively. RESULTS: Results show that compared to HFS1, emissions (72.3±0.96 kg CH4/animal/life; least squares means± standard error of the mean) were 15%, 6%, and 23% lower (p<0.01) for the HFS2, HFS3, and HFS4, respectively. The predicted methane efficiencies (CO2eq) per kg of LW at slaughter (4.3±0.15), carcass weight (8.8±0.25 kg) and kg of edible protein (44.1±1.29) were also lower (p<0.05) in the HFS4. In particular, irrespective of the HSF, feed supply and ratio changes had a more positive impact on emission intensities when crossbred 1/2 Red Angus cattle were fed than in their crossbred counterparts. CONCLUSION: Modest improvements on feeding practices and integrated modelling frameworks may offer potential trade-offs to respond to climate change in Vietnam.

SELECTION OF CITATIONS
SEARCH DETAIL
...