Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042822

ABSTRACT

Functional and versatile nano- and microassemblies formed by biological molecules are found at all levels of life, from cell organelles to full organisms. Understanding the chemical and physicochemical determinants guiding the formation of these assemblies is crucial not only to understand the biological processes they carry out but also to mimic nature. Among the synthetic peptides forming well-defined nanostructures, the octapeptide Lanreotide has been considered one of the best characterized, in terms of both the atomic structure and its self-assembly process. In the present work, we determined the atomic structure of Lanreotide nanotubes at 2.5-Å resolution by cryoelectron microscopy (cryo-EM). Surprisingly, the asymmetric unit in the nanotube contains eight copies of the peptide, forming two tetramers. There are thus eight different environments for the peptide, and eight different conformations in the nanotube. The structure built from the cryo-EM map is strikingly different from the molecular model, largely based on X-ray fiber diffraction, proposed 20 y ago. Comparison of the nanotube with a crystal structure at 0.83-Å resolution of a Lanreotide derivative highlights the polymorphism for this peptide family. This work shows once again that higher-order assemblies formed by even well-characterized small peptides are very difficult to predict.


Subject(s)
Nanotubes/chemistry , Nanotubes/ultrastructure , Peptides, Cyclic/chemistry , Somatostatin/analogs & derivatives , Cryoelectron Microscopy/methods , Models, Molecular , Peptides/chemistry , Peptides, Cyclic/metabolism , Somatostatin/chemistry , Somatostatin/metabolism , X-Ray Diffraction/methods
2.
Nat Commun ; 12(1): 4605, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326328

ABSTRACT

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Subject(s)
BRCA2 Protein/metabolism , Cell Cycle Proteins/metabolism , Spermatogenesis/physiology , Animals , BRCA2 Protein/genetics , Cell Cycle Proteins/genetics , Cells, Cultured , Crystallography, X-Ray/methods , Female , Homologous Recombination , Humans , Magnetic Resonance Spectroscopy , Male , Meiosis , Mice , Models, Animal , Protein Interaction Domains and Motifs , Sequence Deletion
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088835

ABSTRACT

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


Subject(s)
DNA Mismatch Repair/physiology , Endonucleases/metabolism , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Endonucleases/chemistry , Meiosis , Models, Molecular , MutL Protein Homolog 1/chemistry , MutL Protein Homolog 1/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923616

ABSTRACT

DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.


Subject(s)
Ku Autoantigen/metabolism , Animals , DNA Repair , Evolution, Molecular , Humans , Ku Autoantigen/chemistry , Ku Autoantigen/genetics , Protein Processing, Post-Translational
5.
Nucleic Acids Res ; 49(7): 3841-3855, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33744941

ABSTRACT

Barrier-to-autointegration factor (BAF), encoded by the BANF1 gene, is an abundant and ubiquitously expressed metazoan protein that has multiple functions during the cell cycle. Through its ability to cross-bridge two double-stranded DNA (dsDNA), it favours chromosome compaction, participates in post-mitotic nuclear envelope reassembly and is essential for the repair of large nuclear ruptures. BAF forms a ternary complex with the nuclear envelope proteins lamin A/C and emerin, and its interaction with lamin A/C is defective in patients with recessive accelerated aging syndromes. Phosphorylation of BAF by the vaccinia-related kinase 1 (VRK1) is a key regulator of BAF localization and function. Here, we demonstrate that VRK1 successively phosphorylates BAF on Ser4 and Thr3. The crystal structures of BAF before and after phosphorylation are extremely similar. However, in solution, the extensive flexibility of the N-terminal helix α1 and loop α1α2 in BAF is strongly reduced in di-phosphorylated BAF, due to interactions between the phosphorylated residues and the positively charged C-terminal helix α6. These regions are involved in DNA and lamin A/C binding. Consistently, phosphorylation causes a 5000-fold loss of affinity for dsDNA. However, it does not impair binding to lamin A/C Igfold domain and emerin nucleoplasmic region, which leaves open the question of the regulation of these interactions.


Subject(s)
DNA-Binding Proteins , DNA/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lamin Type A/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Secondary
6.
Cell Chem Biol ; 26(11): 1573-1585.e10, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31543461

ABSTRACT

Anti-silencing function 1 (ASF1) is a conserved H3-H4 histone chaperone involved in histone dynamics during replication, transcription, and DNA repair. Overexpressed in proliferating tissues including many tumors, ASF1 has emerged as a promising therapeutic target. Here, we combine structural, computational, and biochemical approaches to design peptides that inhibit the ASF1-histone interaction. Starting from the structure of the human ASF1-histone complex, we developed a rational design strategy combining epitope tethering and optimization of interface contacts to identify a potent peptide inhibitor with a dissociation constant of 3 nM. When introduced into cultured cells, the inhibitors impair cell proliferation, perturb cell-cycle progression, and reduce cell migration and invasion in a manner commensurate with their affinity for ASF1. Finally, we find that direct injection of the most potent ASF1 peptide inhibitor in mouse allografts reduces tumor growth. Our results open new avenues to use ASF1 inhibitors as promising leads for cancer therapy.


Subject(s)
Cell Cycle Proteins/metabolism , Drug Design , Molecular Chaperones/metabolism , Peptides/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Epitopes/chemistry , Epitopes/metabolism , Female , Histones/chemistry , Histones/metabolism , Humans , Kinetics , Mice , Mice, Inbred BALB C , Molecular Chaperones/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Peptides/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Thermodynamics , Transplantation, Homologous
7.
Nucleic Acids Res ; 46(19): 10460-10473, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30137533

ABSTRACT

Lamins are the main components of the nucleoskeleton. Whereas their 3D organization was recently described using cryoelectron tomography, no structural data highlights how they interact with their partners at the interface between the inner nuclear envelope and chromatin. A large number of mutations causing rare genetic disorders called laminopathies were identified in the C-terminal globular Igfold domain of lamins A and C. We here present a first structural description of the interaction between the lamin A/C immunoglobulin-like domain and emerin, a nuclear envelope protein. We reveal that this lamin A/C domain both directly binds self-assembled emerin and interacts with monomeric emerin LEM domain through the dimeric chromatin-associated Barrier-to-Autointegration Factor (BAF) protein. Mutations causing autosomal recessive progeroid syndromes specifically impair proper binding of lamin A/C domain to BAF, thus destabilizing the link between lamin A/C and BAF in cells. Recent data revealed that, during nuclear assembly, BAF's ability to bridge distant DNA sites is essential for guiding membranes to form a single nucleus around the mitotic chromosome ensemble. Our results suggest that BAF interaction with lamin A/C also plays an essential role, and that mutations associated with progeroid syndromes leads to a dysregulation of BAF-mediated chromatin organization and gene expression.


Subject(s)
DNA-Binding Proteins/chemistry , Lamin Type A/chemistry , Membrane Proteins/chemistry , Nuclear Proteins/chemistry , Progeria/metabolism , Protein Domains , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Genes, Recessive , Humans , Lamin Type A/metabolism , Membrane Proteins/metabolism , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutation , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Progeria/genetics , Protein Binding , Protein Multimerization
8.
EMBO Mol Med ; 10(4)2018 04.
Article in English | MEDLINE | ID: mdl-29567797

ABSTRACT

Herein, we report the first identification of biallelic-inherited mutations in ALPI as a Mendelian cause of inflammatory bowel disease in two unrelated patients. ALPI encodes for intestinal phosphatase alkaline, a brush border metalloenzyme that hydrolyses phosphate from the lipid A moiety of lipopolysaccharides and thereby drastically reduces Toll-like receptor 4 agonist activity. Prediction tools and structural modelling indicate that all mutations affect critical residues or inter-subunit interactions, and heterologous expression in HEK293T cells demonstrated that all ALPI mutations were loss of function. ALPI mutations impaired either stability or catalytic activity of ALPI and rendered it unable to detoxify lipopolysaccharide-dependent signalling. Furthermore, ALPI expression was reduced in patients' biopsies, and ALPI activity was undetectable in ALPI-deficient patient's stool. Our findings highlight the crucial role of ALPI in regulating host-microbiota interactions and restraining host inflammatory responses. These results indicate that ALPI mutations should be included in screening for monogenic causes of inflammatory bowel diseases and lay the groundwork for ALPI-based treatments in intestinal inflammatory disorders.


Subject(s)
Alkaline Phosphatase/metabolism , Inflammatory Bowel Diseases/metabolism , Alkaline Phosphatase/deficiency , Alkaline Phosphatase/genetics , GPI-Linked Proteins/deficiency , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , HEK293 Cells , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Intestines , Mutation/genetics , Signal Transduction/physiology
9.
Nucleic Acids Res ; 44(4): 1962-76, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26748096

ABSTRACT

Telomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions. RAP1 is one of the most conserved shelterin proteins although one unresolved question is how its interaction may influence TRF2 properties and regulate its capacity to bind multiple proteins. Through a combination of biochemical, biophysical and structural approaches, we unveiled a unique mode of assembly between RAP1 and TRF2. The complete interaction scheme between the full-length proteins involves a complex biphasic interaction of RAP1 that directly affects the binding properties of the assembly. These results reveal how a non-DNA binding protein can influence the properties of a DNA-binding partner by mutual conformational adjustments.


Subject(s)
DNA-Binding Proteins/genetics , Genomic Instability , Telomere-Binding Proteins/genetics , Telomeric Repeat Binding Protein 2/genetics , DNA Damage/genetics , DNA-Binding Proteins/metabolism , Humans , Multiprotein Complexes , Protein Binding , Shelterin Complex , Telomere/genetics , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 2/chemistry , Telomeric Repeat Binding Protein 2/metabolism
10.
Mol Cell ; 61(2): 274-86, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26774283

ABSTRACT

The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Telomere/metabolism , Telomeric Repeat Binding Protein 2/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Base Pairing , DNA/metabolism , DNA Damage , DNA End-Joining Repair , HeLa Cells , Humans , Lysine/metabolism , Models, Molecular , Mutation , Protein Structure, Tertiary , Shelterin Complex , Signal Transduction , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 2/chemistry
11.
Nat Commun ; 6: 7771, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26190377

ABSTRACT

External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended ß-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.


Subject(s)
Histidine/metabolism , Protein Structure, Secondary , Triptorelin Pamoate/metabolism , Crystallography, X-Ray , Histidine/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Nanotubes, Peptide/chemistry , Optical Imaging , Protein Conformation , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Triptorelin Pamoate/chemistry
12.
J Biol Chem ; 288(24): 17347-59, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23620594

ABSTRACT

Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn(85), Phe(168), and Trp(182). The propensity of the cYY tyrosyl to point toward Arg(386) was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Dipeptides/chemistry , Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/chemistry , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Hydrogen Bonding , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Solutions , Substrate Specificity
13.
Front Oncol ; 3: 48, 2013.
Article in English | MEDLINE | ID: mdl-23509004

ABSTRACT

A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. The fact that different types of nucleoprotein complexes have been described at the telomeres of different organisms raises the question of whether they have in common a structural identity that explains their role in chromosome protection. We will review here how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA, and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guarantee the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We will also discuss the recent notion that telomeres have evolved specific systems to overcome the DNA topological stress generated during their replication and transcription. This will lead to revisit the way we envisage the functioning of telomeric complexes since the regulation of topology is central to DNA stability, replication, recombination, and transcription as well as to chromosome higher-order organization.

14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 3): 409-19, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23519416

ABSTRACT

Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.


Subject(s)
DNA, Fungal/chemistry , DNA, Fungal/metabolism , Potassium Permanganate/chemistry , Potassium Permanganate/pharmacology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Telomere-Binding Proteins/chemistry , Transcription Factors/chemistry , Arginine/chemistry , Crystallography, X-Ray , Cytosine/chemistry , DNA, Fungal/drug effects , Hydrogen Bonding/drug effects , Nucleic Acid Conformation/drug effects , Protein Binding/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Shelterin Complex , Solutions , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Nat Struct Mol Biol ; 20(4): 461-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23435383

ABSTRACT

Mismatch-repair factors have a prominent role in surveying eukaryotic DNA-replication fidelity and in ensuring correct meiotic recombination. These functions depend on MutL-homolog heterodimers with Mlh1. In humans, MLH1 mutations underlie half of hereditary nonpolyposis colorectal cancers (HNPCCs). Here we report crystal structures of the MutLα (Mlh1-Pms1 heterodimer) C-terminal domain (CTD) from Saccharomyces cerevisiae, alone and in complex with fragments derived from Mlh1 partners. These structures reveal structural rearrangements and additional domains in MutLα as compared to the bacterial MutL counterparts and show that the strictly conserved C terminus of Mlh1 forms part of the Pms1 endonuclease site. The structures of the ternary complexes between MutLα(CTD) and Exo1 or Ntg2 fragments reveal the binding mode of the MIP-box motif shared by several Mlh1 partners. Finally, the structures provide a rationale for the deleterious impact of MLH1 mutations in HNPCCs.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , DNA Repair Enzymes/chemistry , Endonucleases/chemistry , Nuclear Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , DNA Repair Enzymes/metabolism , Endonucleases/metabolism , Humans , Models, Molecular , MutL Protein Homolog 1 , MutL Proteins , Nuclear Proteins/metabolism , Protein Structure, Secondary
16.
Proc Natl Acad Sci U S A ; 109(17): E1001-10, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22460800

ABSTRACT

The 26S proteasome, a molecular machine responsible for regulated protein degradation, consists of a proteolytic core particle (20S CP) associated with 19S regulatory particles (19S RPs) subdivided into base and lid subcomplexes. The assembly of 19S RP base subcomplex is mediated by multiple dedicated chaperones. Among these, Hsm3 is important for normal growth and directly targets the carboxyl-terminal (C-terminal) domain of Rpt1 of the Rpt1-Rpt2-Rpn1 assembly intermediate. Here, we report crystal structures of the yeast Hsm3 chaperone free and bound to the C-terminal domain of Rpt1. Unexpectedly, the structure of the complex suggests that within the Hsm3-Rpt1-Rpt2 module, Hsm3 also contacts Rpt2. We show that in both yeast and mammals, Hsm3 actually directly binds the AAA domain of Rpt2. The Hsm3 C-terminal region involved in this interaction is required in vivo for base assembly, although it is dispensable for binding Rpt1. Although Rpt1 and Rpt2 exhibit weak affinity for each other, Hsm3 unexpectedly acts as an essential matchmaker for the Rpt1-Rpt2-Rpn1 assembly by bridging both Rpt1 and Rpt2. In addition, we provide structural and biochemical evidence on how Hsm3/S5b may regulate the 19S RP association to the 20S CP proteasome. Our data point out the diverse functions of assembly chaperones.


Subject(s)
Molecular Chaperones/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Binding Sites , Models, Molecular , Molecular Chaperones/chemistry , Protein Conformation , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry
17.
Nucleic Acids Res ; 40(7): 3197-207, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22139930

ABSTRACT

Rap1 is an essential DNA-binding factor from the yeast Saccharomyces cerevisiae involved in transcription and telomere maintenance. Its binding to DNA targets Rap1 at particular loci, and may optimize its ability to form functional macromolecular assemblies. It is a modular protein, rich in large potentially unfolded regions, and comprising BRCT, Myb and RCT well-structured domains. Here, we present the architectures of Rap1 and a Rap1/DNA complex, built through a step-by-step integration of small angle X-ray scattering, X-ray crystallography and nuclear magnetic resonance data. Our results reveal Rap1 structural adjustment upon DNA binding that involves a specific orientation of the C-terminal (RCT) domain with regard to the DNA binding domain (DBD). Crystal structure of DBD in complex with a long DNA identifies an essential wrapping loop, which constrains the orientation of the RCT and affects Rap1 affinity to DNA. Based on our structural information, we propose a model for Rap1 assembly at telomere.


Subject(s)
DNA/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Telomere-Binding Proteins/chemistry , Transcription Factors/chemistry , Crystallography, X-Ray , DNA/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/metabolism , Scattering, Small Angle , Shelterin Complex , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Telomere-Binding Proteins/metabolism , Transcription Factors/metabolism , X-Ray Diffraction
18.
Nucleic Acids Res ; 39(10): 4475-89, 2011 May.
Article in English | MEDLINE | ID: mdl-21296757

ABSTRACT

Cyclodipeptide synthases (CDPSs) belong to a newly defined family of enzymes that use aminoacyl-tRNAs (aa-tRNAs) as substrates to synthesize the two peptide bonds of various cyclodipeptides, which are the precursors of many natural products with noteworthy biological activities. Here, we describe the crystal structure of AlbC, a CDPS from Streptomyces noursei. The AlbC structure consists of a monomer containing a Rossmann-fold domain. Strikingly, it is highly similar to the catalytic domain of class-I aminoacyl-tRNA synthetases (aaRSs), especially class-Ic TyrRSs and TrpRSs. AlbC contains a deep pocket, highly conserved among CDPSs. Site-directed mutagenesis studies indicate that this pocket accommodates the aminoacyl moiety of the aa-tRNA substrate in a way similar to that used by TyrRSs to recognize their tyrosine substrates. These studies also suggest that the tRNA moiety of the aa-tRNA interacts with AlbC via at least one patch of basic residues, which is conserved among CDPSs but not present in class-Ic aaRSs. AlbC catalyses its two-substrate reaction via a ping-pong mechanism with a covalent intermediate in which L-Phe is shown to be transferred from Phe-tRNA(Phe) to an active serine. These findings provide insight into the molecular bases of the interactions between CDPSs and their aa-tRNAs substrates, and the catalytic mechanism used by CDPSs to achieve the non-ribosomal synthesis of cyclodipeptides.


Subject(s)
Bacterial Proteins/chemistry , Dipeptides/biosynthesis , Peptide Synthases/chemistry , Peptides, Cyclic/biosynthesis , Amino Acid Sequence , Amino Acyl-tRNA Synthetases/chemistry , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography , Models, Molecular , Molecular Sequence Data , Peptide Biosynthesis, Nucleic Acid-Independent , Peptide Synthases/metabolism , RNA, Transfer, Amino Acyl/chemistry , RNA, Transfer, Amino Acyl/metabolism , Sequence Homology, Amino Acid , Streptomyces/enzymology
19.
FEBS Lett ; 584(17): 3785-99, 2010 Sep 10.
Article in English | MEDLINE | ID: mdl-20696167

ABSTRACT

A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization.


Subject(s)
Telomere/chemistry , Telomere/genetics , Animals , DNA/genetics , DNA Repair/genetics , Genetic Variation , Humans , Mammals , Oxytricha/genetics , Proteins/genetics , RNA/genetics , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Tandem Repeat Sequences , Telomere/metabolism
20.
Proc Natl Acad Sci U S A ; 106(18): 7426-31, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19416919

ABSTRACT

The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 A), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 A apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Dipeptides/chemistry , Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydrogen Bonding , Mycobacterium tuberculosis/genetics , Nuclear Magnetic Resonance, Biomolecular , Oxygen/chemistry , Oxygen/metabolism , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...