Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830864

ABSTRACT

Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.


Subject(s)
Camelids, New World , Immunoglobulin Heavy Chains , Mice, Transgenic , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Animals , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Camelids, New World/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Mice , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Immunoglobulin E/immunology , Humans , Dependovirus/genetics , Dependovirus/immunology , Immunoglobulin G/immunology , COVID-19/immunology , B-Lymphocytes/immunology
2.
Mol Pharm ; 20(10): 4826-4847, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37721387

ABSTRACT

Antigen-presenting cells (APCs) orchestrate immune responses and are therefore of interest for the targeted delivery of therapeutic vaccines. Dendritic cells (DCs) are professional APCs that excel in presentation of exogenous antigens toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs are highly heterogeneous and can be divided into subpopulations that differ in abundance, function, and phenotype, such as differential expression of endocytic receptor molecules. It is firmly established that targeting antigens to DC receptors enhances the efficacy of therapeutic vaccines. While most studies emphasize the importance of targeting a specific DC subset, we argue that the differential intracellular routing downstream of the targeted receptors within the DC subset should also be considered. Here, we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and vaccine efficacy, which will guide target selection for future therapeutic vaccine development.

3.
Bioconjug Chem ; 32(2): 301-310, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33476135

ABSTRACT

Functionalized antibodies and antibody fragments have found applications in the fields of biomedical imaging, theranostics, and antibody-drug conjugates (ADC). In addition, therapeutic and theranostic approaches benefit from the possibility to deliver more than one type of cargo to target cells, further challenging stochastic labeling strategies. Thus, bioconjugation methods to reproducibly obtain defined homogeneous conjugates bearing multiple different cargo molecules, without compromising target affinity, are in demand. Here, we describe a straightforward CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to secrete Fab' fragments bearing two distinct site-specific labeling motifs, which can be separately modified by two different sortase A mutants. We show that sequential genetic editing of the heavy chain (HC) and light chain (LC) loci enables the generation of a stable cell line that secretes a dual tagged Fab' molecule (DTFab'), which can be easily isolated. To demonstrate feasibility, we functionalized the DTFab' with two distinct cargos in a site-specific manner. This technology platform will be valuable in the development of multimodal imaging agents, theranostics, and next-generation ADCs.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Hybridomas/chemistry , Immunoglobulin Fab Fragments/chemistry , Antibodies, Monoclonal/chemistry , Immunoconjugates/chemistry , Stochastic Processes
4.
Sci Adv ; 5(8): eaaw1822, 2019 08.
Article in English | MEDLINE | ID: mdl-31489367

ABSTRACT

Hybridoma technology is instrumental for the development of novel antibody therapeutics and diagnostics. Recent preclinical and clinical studies highlight the importance of antibody isotype for therapeutic efficacy. However, since the sequence encoding the constant domains is fixed, tuning antibody function in hybridomas has been restricted. Here, we demonstrate a versatile CRISPR/HDR platform to rapidly engineer the constant immunoglobulin domains to obtain recombinant hybridomas, which secrete antibodies in the preferred format, species, and isotype. Using this platform, we obtained recombinant hybridomas secreting Fab' fragments, isotype-switched chimeric antibodies, and Fc-silent mutants. These antibody products are stable, retain their antigen specificity, and display their intrinsic Fc-effector functions in vitro and in vivo. Furthermore, we can site-specifically attach cargo to these antibody products via chemoenzymatic modification. We believe that this versatile platform facilitates antibody engineering for the entire scientific community, empowering preclinical antibody research.


Subject(s)
Antibodies, Monoclonal/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Hybridomas/physiology , Animals , Antibody Specificity/genetics , Cell Line, Tumor , Genomics/methods , Immunoglobulin Fab Fragments/genetics , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...