Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 294(2): R520-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18032465

ABSTRACT

The influence of dietary vitamins on growth, survival, and morphogenesis was evaluated until day 38 of posthatching life in European sea bass larvae (Dicentrarchus labrax). A standard vitamin mix (VM), at double the concentration of the U.S. National Research Council's recommendations, was incorporated into larval feeds at 0.5%, 1.5%, 2.5%, 4.0%, and 8.0% to give treatments VM 0.5, VM 1.5, VM 2.5, VM 4.0, and VM 8.0, respectively. The group fed the VM 0.5 diet all died before day 30. At day 38, the larvae group fed VM 1.5 had 33% survival, while the other groups, with higher vitamin levels, showed at least 50% survival. The higher the percentage VM in the diet, the lower the percentage of column deformities. High dietary vitamin levels positively influenced the formation of mineralized bone in larvae: the higher the dietary vitamin level, the higher the ossification status. In the larvae group fed at the highest vitamin levels, we observed a temporal sequence of coordinated growth factor expression, in which the expression of bone morphometric protein (BMP-4) preceded the expression of IGF-1, which stimulated the maturation of osteoblasts (revealed by high osteocalcin expression levels). In groups fed lower proportions of vitamins, elevated proliferator peroxisome-activated receptors (PPAR-gamma) expression coincided with low BMP-4 expression. Our results suggest that high levels of PPAR-gamma transcripts in larvae-fed diets with a low VM content converted some osteoblasts into adipocytes during the first two weeks of life. This loss of osteoblasts is likely to have caused skeletal deformities.


Subject(s)
Animal Feed , Bass/physiology , Bone Development/drug effects , Osteogenesis/drug effects , Vitamins/pharmacology , Animals , Bass/growth & development , Bone Development/physiology , Bone Morphogenetic Protein 4 , Bone Morphogenetic Proteins/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Insulin-Like Growth Factor I/genetics , Osteocalcin/genetics , Osteogenesis/physiology , PPAR gamma/genetics , Retinoid X Receptor alpha/genetics
2.
Fish Physiol Biochem ; 15(3): 237-42, 1996 Jun.
Article in English | MEDLINE | ID: mdl-24194142

ABSTRACT

Sea bass (Dicentrarchus labrax) larvae were fed from day 15 to day 35 with 4 isoenergetic formulated diets that varied in protein (30, 40, 50, 60%) and carbohydrate (37, 27, 17, 7%) content. The diets were designated as P30, P40, P50 and P60, respectively. Best growth and survival were noted for P50 larvae. Poor growth and survival were observed for P30 larvae. The specific activity of amylase increased in direct relation to the dietary carbohydrate level from day 18 onwards. This increase was the result of extensive amylase synthesis. Trypsin activity was positively correlated with dietary protein level only at day 35. This study shows that the mechanisms involved in amylase regulation are efficient in very young sea bass larvae, while those related to trypsin appear later in ontogeny and thus suggests an age-dependent regulation of enzyme synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...