Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(25): 256001, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922788

ABSTRACT

Orientation-dependent aloof-beam vibrational electron-energy-loss spectroscopy is carried out on uniaxial icosahedral B_{12}P_{2} submicron crystals. We demonstrate that the high sensitivity of the signal to the crystal orientation allows for an unambiguous determination of the symmetry of normal modes occurring at the Brillouin zone center of this anisotropic compound. The experimental results are assessed using first-principles quantum mechanical calculations (density functional theory) of the dielectric response of the specimen. The high spatial resolution inherent to this technique when implemented in the transmission electron microscope thus opens the door to nanoscale orientation-dependent vibrational spectroscopy.

2.
J Synchrotron Radiat ; 25(Pt 3): 818-825, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714193

ABSTRACT

In situ microtomography at high pressure and temperature has developed rapidly in the last decade, driven by the development of new high-pressure apparatus. It is now routinely possible to characterize material under high pressure with acquisition times for tomograms of the order of tens of minutes. Here, advantage was taken of the possibility to combine the use of a pink beam projected through a standard Paris-Edinburgh press in order to demonstrate the possibility to perform high-speed synchrotron X-ray tomography at high pressure and temperature allowing complete high-resolution tomograms to be acquired in about 10 s. This gives direct visualization to rapidly evolving or unstable systems, such as flowing liquids or reacting components, and avoids assumptions in the interpretation of quenched samples. Using algebraic reconstruction techniques allows the missing angle artefacts that result from the columns of the press to be minimized.

3.
J Synchrotron Radiat ; 24(Pt 1): 240-247, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28009563

ABSTRACT

X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

4.
Phys Rev Lett ; 96(6): 067801, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16606049

ABSTRACT

We present a neutron diffraction study of liquid water to 6.5 GPa and 670 K. From the measured structure factors we determine radial and angular distributions. It is shown that with increasing density water approaches a local structure common to a simple liquid while distorting only a little the tetrahedral first-neighbor coordination imposed by hydrogen bonds that remain intact.

SELECTION OF CITATIONS
SEARCH DETAIL
...