Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
New Microbes New Infect ; 26: 3-7, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30245826

ABSTRACT

Yersinia entomophaga is an insect pathogen first isolated from larvae of Coleoptera in New Zealand in 2011. We report here the first isolation of Y. entomophaga from human urine. Using whole-genome sequencing, we confirmed the presence of specific chromosomal virulence genes and identified a plasmid harbouring a quinolone resistance gene.

2.
J Clin Microbiol ; 50(8): 2702-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22692743

ABSTRACT

Matrix-associated laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid and simple microbial identification method. Previous reports using the Biotyper system suggested that this technique requires a preliminary extraction step to identify Gram-positive rods (GPRs), a technical issue that may limit the routine use of this technique to identify pathogenic GPRs in the clinical setting. We tested the accuracy of the MALDI-TOF MS Andromas strategy to identify a set of 659 GPR isolates representing 16 bacterial genera and 72 species by the direct colony method. This bacterial collection included 40 C. diphtheriae, 13 C. pseudotuberculosis, 19 C. ulcerans, and 270 other Corynebacterium isolates, 32 L. monocytogenes and 24 other Listeria isolates, 46 Nocardia, 75 Actinomyces, 18 Actinobaculum, 11 Propionibacterium acnes, 18 Propionibacterium avidum, 30 Lactobacillus, 21 Bacillus, 2 Rhodococcus equi, 2 Erysipelothrix rhusiopathiae, and 38 other GPR isolates, all identified by reference techniques. Totals of 98.5% and 1.2% of non-Listeria GPR isolates were identified to the species or genus level, respectively. Except for L. grayi isolates that were identified to the species level, all other Listeria isolates were identified to the genus level because of highly similar spectra. These data demonstrate that rapid identification of pathogenic GPRs can be obtained without an extraction step by MALDI-TOF mass spectrometry.


Subject(s)
Bacteria, Aerobic/chemistry , Bacteria, Aerobic/classification , Bacteriological Techniques/methods , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/classification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Humans , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...