Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 14, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36694212

ABSTRACT

BACKGROUND: Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. RESULTS: Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO2 fixation pathways in the oxic lake interface and anoxic zone/sediments, suggesting that oxygen likely plays a role in structuring metabolic strategies in non-CPR bacteria and archaea. Notably, we find that the oxidation of methane and its byproducts is largely spatially separated from methane production, which is mediated by diverse communities of sediment methanogens that vary on the centimeter scale. In contrast, we detected evidence for RuBisCO throughout the water column and sediments, including form II/III and form III-related enzymes encoded by CPR bacteria in the water column and DPANN archaea in the sediments. On the whole, though, CPR bacteria and phages did not show strong signals of gene content differentiation by depth, despite the fact that distinct species groups populate different lake and sediment compartments. CONCLUSIONS: Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.


Subject(s)
Archaea , Bacteriophages , Archaea/genetics , Archaea/metabolism , Bacteriophages/metabolism , Bacteria/genetics , Bacteria/metabolism , Lakes/microbiology , Oxygen/metabolism , Water , Methane/metabolism , Phylogeny , Geologic Sediments/microbiology
2.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28970224

ABSTRACT

Monitoring of water and surface sediment in a French eutrophic lake (Lake Aydat) was carried out over a 2-year period in order to determine whether akinetes in sediment could be representative of the most recent bloom and to estimate their germination potential. Sediment analysis revealed two akinete species, Dolichospermum macrosporum and Dolichospermumflos-aquae, present in the same proportions as observed for the pelagic populations. Moreover, similar spatial patterns observed for vegetative cells in the water column and akinete distributions in the sediment suggest that akinetes in the sediment may be representative of the previous bloom. However, the relationship between akinetes in the sediment and vegetative cells in the water column was not linear, and other factors may interfere. For example, our results highlighted horizontal transport of akinetes during the winter. The benthic overwinter phase did not seem to influence the percentages of intact akinetes, which remained stable at approximately 7% and 60% for D. macrosporum and D. flos-aquae, respectively. These percentages may thus be the result of processes that occurred in the water column. The intact overwintering akinetes showed germination rates of up to 90% after 72 h for D. flos-aquae or 144 h for D. macrosporum The difference in akinete germination rates between these two species demonstrates different ecological strategies, which serve to expand the window for germination in time and space and thus optimize colonization of the water column by nostocalean cyanobacteria.IMPORTANCE Cyanobacteria have the ability to proliferate and to form blooms. These blooms can then affect the local ecology, health, and economy. The akinete, a resistant cell type that persists in sediment, is an important intermediate phase between previous and future blooms. We monitored the water column and the surface sediment of a French eutrophic lake (Lake Aydat) to investigate the relationship between vegetative cells in the water column and akinetes in the sediment. This study focused on the characterization of spatiotemporal akinete distributions, cellular integrity, and germination potential. Species-specific ecological strategies were highlighted and may partly explain the temporal succession of species in the water column. Akinetes may also be used to understand past nostocalean blooms and to predict future ones.


Subject(s)
Cyanobacteria/growth & development , Eutrophication , Geologic Sediments/microbiology , Lakes/microbiology , France , Seasons
3.
Environ Pollut ; 165: 100-8, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22420993

ABSTRACT

MeHg biomagnification by the phantom midge Chaoborus in relation to MeHg concentrations in their prey and its migratory behavior was investigated in two Canadian Precambrian Shield lakes. Three Chaoborus species with contrasted migratory behavior were collected in a fishless and a fish-inhabited lake. All species accumulated MeHg through their ontogenic development. In the lake inhabited by fish, all instars of Chaoborus punctipennis displayed a marked migratory behavior and were unable to biomagnify MeHg, whereas in the fishless lake, Chaoborus americanus and Chaoborus trivittatus biomagnified MeHg. Reduced biomagnification capacity of C. trivittatus, the coexisting species living with C. americanus, was also ascribed to a progressive vertical segregation with age. Growth dilution, amount and type of prey items or trophic position could not explain the different patterns of biomagnification. Our findings demonstrate that the most common invertebrate predator of temperate planktonic food webs can biomagnify mercury, contrarily to previous reports.


Subject(s)
Diptera/metabolism , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Food Chain , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis
4.
PLoS One ; 6(5): e20129, 2011.
Article in English | MEDLINE | ID: mdl-21625603

ABSTRACT

We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼10(2) to 10(4) cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web.


Subject(s)
Bromelia/physiology , Food Chain , Species Specificity
5.
Aquat Toxicol ; 94(4): 255-64, 2009 Oct 04.
Article in English | MEDLINE | ID: mdl-19716610

ABSTRACT

Copper sulphate is a common algaecide applied to ponds in order to keep phytoplanktonic blooms under control, especially those prone to cyanobacterial development. The copper toxicity was evaluated for two phytoplanktonic species with the same size and shape: one cyanobacteria Microcystis aeruginosa and one chlorophyceae Chlorella vulgaris. Under controlled conditions in order to keep free copper concentration constant, three bioassays were carried out: growth inhibition tests and two sets of flow cytometric analysis (autofluorescence and esterase activity inhibition). The results showed: (1) that regardless of the cell type, as copper concentrations increased, cell division rate and autofluorescence decreased, (2) a difference in sensitivity according to the length of exposure to copper: 24 or 48 h, and (3) that M. aeruginosa showed a greater sensitivity than C. vulgaris in the 24h copper exposure assay according to esterase activity data.


Subject(s)
Cell Division/drug effects , Chlorella vulgaris/drug effects , Copper/toxicity , Microcystis/drug effects , Toxicity Tests , Biological Assay , Cell Division/physiology , Chlorella vulgaris/enzymology , Chlorella vulgaris/metabolism , Copper Sulfate/toxicity , Esterases/metabolism , Flow Cytometry , Microcystis/enzymology , Microcystis/metabolism , Time Factors
6.
Aquat Toxicol ; 83(3): 223-37, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17582517

ABSTRACT

It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions.


Subject(s)
Copper Sulfate/toxicity , Cyanobacteria/drug effects , Phytoplankton/drug effects , Water Microbiology , Animals , Biomass , Ciliophora/drug effects , Copper Sulfate/chemistry , Ecosystem , Eukaryota/drug effects , Fresh Water , In Situ Hybridization, Fluorescence , Pigmentation/drug effects , Polarography , Seasons
7.
Aquat Toxicol ; 80(3): 267-80, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17095105

ABSTRACT

Copper sulphate treatment is widely used as a global and empirical method to remove or control phytoplankton blooms without precise description of the impact on phytoplanktonic populations. The effects of two copper sulphate treatments on natural phytoplanktonic communities sampled in the spring and summer seasons, were assessed by indoor mesocosm experiments. The initial copper-complexing capacity of each water sample was evaluated before each treatment. The copper concentrations applied were 80 microg l(-1) and 160 microg l(-1) of copper, below and above the water complexation capacity, respectively. The phytoplanktonic biomass recovered within a few days after treatment. The highest copper concentration, which generated a highly toxic environment, caused a global decrease in phytoplankton diversity, and led to the development and dominance of nanophytoplanktonic Chlorophyceae. In mesocosms treated with 80 microg l(-1) of copper, the effect on phytoplanktonic community size-class structure and composition was dependent on seasonal variation. This could be related to differences in community composition, and thus to species sensitivity to copper and to differences in copper bioavailability between spring and summer. Both treatments significantly affected cyanobacterial biomass and caused changes in the size-class structure and composition of phytoplanktonic communities which may imply modifications of the ecosystem structure and function.


Subject(s)
Copper Sulfate/toxicity , Cyanobacteria/drug effects , Dinoflagellida/drug effects , Eukaryota/drug effects , Phytoplankton/drug effects , Animals , Biodiversity , Biomass , Copper Sulfate/analysis , Cyanobacteria/isolation & purification , Dinoflagellida/isolation & purification , Eukaryota/isolation & purification , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...