Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712292

ABSTRACT

Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a novel and selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated CTLs. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.

2.
Haematologica ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450513

ABSTRACT

Mitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.

3.
Hematol Oncol ; 42(1): e3233, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37876297

ABSTRACT

Peripheral T-cell lymphoma (PTCL) is a clinically heterogeneous group that represents 10%-15% of all lymphomas. Despite improved genetic and molecular understanding, treatment outcomes for PTCL have not shown significant improvement. Although Janus kinase-2 (JAK2) plays an important role in myeloproliferative neoplasms, the critical role of JAK isoforms in mediating prosurvival signaling in PTCL cells is not well defined. Immunohistochemical analysis of PTCL tumors (n = 96) revealed high levels of constitutively active JAK3 (pJAK3) that significantly (p < 0.04) correlated with the activation state of its canonical substrate STAT3. Furthermore, constitutive activation of JAK3 and STAT3 positively correlated, at least in part, with an oncogenic tyrosine phosphatase PTPN11. Pharmacological inhibition of JAK3 but not JAK1/JAK2 significantly (p < 0.001) decreased PTCL proliferation, survival and STAT3 activation. A sharp contrast was observed in the pJAK3 positivity between ALK+ (85.7%) versus ALK-negative (10.0%) in human PTCL tumors and PTCL cell lines. Moreover, JAK3 and ALK reciprocally interacted in PTCL cells, forming a complex to possibly regulate STAT3 signaling. Finally, combined inhibition of JAK3 (by WHI-P154) and ALK (by crizotinib or alectinib) significantly (p < 0.01) decreased the survival of PTCL cells as compared to either agent alone by inhibiting STAT3 downstream signaling. Collectively, our findings establish that JAK3 is a therapeutic target for a subset of PTCL, and provide rationale for the clinical evaluation of JAK3 inhibitors combined with ALK-targeted therapy in PTCL.


Subject(s)
Lymphoma, T-Cell, Peripheral , Humans , Lymphoma, T-Cell, Peripheral/drug therapy , Lymphoma, T-Cell, Peripheral/genetics , Cell Line, Tumor , Signal Transduction , Phosphorylation , Receptor Protein-Tyrosine Kinases , Janus Kinase 3
4.
J Med Chem ; 66(14): 9954-9971, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37436942

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a major unmet medical need with limited treatment options. Despite different mechanisms of action, diverse chemotherapeutics can cause CIPN through a converged pathway─an active axon degeneration program that engages the dual leucine zipper kinase (DLK). DLK is a neuronally enriched kinase upstream in the MAPK-JNK cascade, and while it is dormant under physiological conditions, DLK mediates a core mechanism for neuronal injury response under stress conditions, making it an attractive target for treatment of neuronal injury and neurodegenerative diseases. We have developed potent, selective, brain penetrant DLK inhibitors with excellent PK and activity in mouse models of CIPN. Lead compound IACS-52825 (22) showed strongly effective reversal of mechanical allodynia in a mouse model of CIPN and was advanced into preclinical development.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Mice , Animals , Neurons , MAP Kinase Signaling System , Brain/metabolism , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Antineoplastic Agents/adverse effects , MAP Kinase Kinase Kinases
5.
J Hypertens ; 41(5): 775-793, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36883465

ABSTRACT

OBJECTIVES: Short-chain acyl-CoA dehydrogenase (SCAD), a key enzyme in the fatty acid oxidation process, is not only involved in ATP synthesis but also regulates the production of mitochondrial reactive oxygen species (ROS) and nitric oxide synthesis. The purpose of this study was to investigate the possible role of SCAD in hypertension-associated vascular remodelling. METHODS: In-vivo experiments were performed on spontaneously hypertensive rats (SHRs, ages of 4 weeks to 20 months) and SCAD knockout mice. The aorta sections of hypertensive patients were used for measurement of SCAD expression. In-vitro experiments with t-butylhydroperoxide (tBHP), SCAD siRNA, adenovirus-SCAD (MOI 90) or shear stress (4, 15 dynes/cm 2 ) were performed using human umbilical vein endothelial cells (HUVECs). RESULTS: Compared with age-matched Wistar rats, aortic SCAD expression decreased gradually in SHRs with age. In addition, aerobic exercise training for 8 weeks could significantly increase SCAD expression and enzyme activity in the aortas of SHRs while decreasing vascular remodelling in SHRs. SCAD knockout mice also exhibited aggravated vascular remodelling and cardiovascular dysfunction. Likewise, SCAD expression was also decreased in tBHP-induced endothelial cell apoptosis models and the aortas of hypertensive patients. SCAD siRNA caused HUVEC apoptosis in vitro , whereas adenovirus-mediated SCAD overexpression (Ad-SCAD) protected against HUVEC apoptosis. Furthermore, SCAD expression was decreased in HUVECs exposed to low shear stress (4 dynes/cm 2 ) and increased in HUVECs exposed to 15 dynes/cm 2 compared with those under static conditions. CONCLUSION: SCAD is a negative regulator of vascular remodelling and may represent a novel therapeutic target for vascular remodelling.


Subject(s)
Butyryl-CoA Dehydrogenase , Hypertension , Rats , Animals , Mice , Humans , Infant, Newborn , Butyryl-CoA Dehydrogenase/genetics , Butyryl-CoA Dehydrogenase/metabolism , Vascular Remodeling , Rats, Inbred SHR , Rats, Wistar , Human Umbilical Vein Endothelial Cells/metabolism , RNA, Small Interfering/metabolism , Mice, Knockout
6.
Blood Adv ; 7(15): 3952-3967, 2023 08 08.
Article in English | MEDLINE | ID: mdl-36630565

ABSTRACT

Tumor-associated macrophages (TAMs) within the tumor microenvironment (TME) play an important role in tumor growth and progression. TAMs have been involved in producing immunosuppressive TME via various factors; however, the underlying mechanisms remain unclear in B-cell lymphoma, including mantle cell lymphoma (MCL). We identified that chemokine receptor-1 (CCR1) is highly expressed on monocytes (Mo) and macrophages (MΦ), and CCR1 pharmacological inhibition or CCR1 siRNA abolished lymphoma-mediated Mo/MΦ migration in a chemotaxis assay. The deficiency of host CCR1 (CCR1 KO) was associated with decreased infiltration of peritoneal-MΦ compared with WT-CCR1. Functional studies indicated that the genetic depletion of CCR1 or treatment inhibited protumor MΦ (M2-like) phenotype by decreasing CD206 and IL-10 expression. Moreover, CCR1 depletion reprogrammed MΦ toward an MHCII+/TNFα+ immunogenic phenotype. Mechanistically, protumor MΦ driven-IL-10 provides a positive feedback loop to tumor-CCL3 by regulating the CCL3 promoter via STAT1 signaling. Therapeutic in vivo targeting of CCR1 with CCR1 antagonist BX-471 significantly reduced FC-muMCL1 mouse tumors in the syngeneic MCL model by the depletion of M2-TAMs and increased infiltration of cytotoxic CD8+ T cells. Our study established that CCR1 exerts a pivotal role in macrophage programming, thus shaping protumor TME and lymphoma progression. CCR1 inhibition through CCR1 antagonists may be a promising therapeutic strategy to reprogram macrophages in lymphoma-TME and achieve better clinical outcomes in patients.


Subject(s)
Neoplasms , Receptors, Chemokine , Mice , Animals , Receptors, Chemokine/metabolism , Interleukin-10 , Macrophages/metabolism , Signal Transduction , Neoplasms/metabolism , Phenotype , Tumor Microenvironment
7.
Eur Radiol ; 33(6): 3931-3940, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36600124

ABSTRACT

OBJECTIVES: This study aims to predict the high-grade pattern (HGP) of stage IA lung invasive adenocarcinoma (IAC) based on the high-resolution CT (HRCT) features. METHODS: The clinical, pathological, and HRCT imaging data of 457 patients (from bicentric) with pathologically confirmed stage IA IAC (459 lesions in total) were retrospectively analyzed. The 459 lesions were classified into high-grade pattern (HGP) (n = 101) and non-high-grade pattern (n-HGP) (n = 358) groups depending on the presence of HGP (micropapillary and solid) in pathological results. The clinical and pathological data contained age, gender, smoking history, tumor stage, pathological type, and presence or absence of tumor spread through air spaces (STAS). CT features consisted of lesion location, size, density, shape, spiculation, lobulation, vacuole, air bronchogram, and pleural indentation. The independent predictors for HGP were screened by univariable and multivariable logistic regression analyses. The clinical, CT, and clinical-CT models were constructed according to the multivariable analysis results. RESULTS: The multivariate analysis suggested the independent predictors of HGP, encompassing tumor size (p = 0.001; OR = 1.090, 95% CI 1.035-1.148), density (p < 0.001; OR = 9.454, 95% CI 4.911-18.199), and lobulation (p = 0.002; OR = 2.722, 95% CI 1.438-5.154). The AUC values of clinical, CT, and clinical-CT models for predicting HGP were 0.641 (95% CI 0.583-0.699) (sensitivity = 69.3%, specificity = 79.2%), 0.851 (95% CI 0.806-0.896) (sensitivity = 79.2%, specificity = 79.6%), and 0.852 (95% CI 0.808-0.896) (sensitivity = 74.3%, specificity = 85.8%). CONCLUSION: The logistic regression model based on HRCT features has a good diagnostic performance for the high-grade pattern of stage IA IAC. KEY POINTS: • The AUC values of clinical, CT, and clinical-CT models for predicting high-grade patterns were 0.641 (95% CI 0.583-0.699), 0.851 (95% CI 0.806-0.896), and 0.852 (95% CI 0.808-0.896). • Tumor size, density, and lobulation were independent predictive markers for high-grade patterns. • The logistic regression model based on HRCT features has a good diagnostic performance for the high-grade patterns of invasive adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Tomography, X-Ray Computed/methods , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Lung/pathology , Neoplasm Invasiveness/pathology
8.
Journal of Geriatric Cardiology ; (12): 350-360, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982199

ABSTRACT

BACKGROUND@#The molecular mechanisms of heart failure (HF) are still poorly understood. Circular RNA (circRNA) has been discovered in the heart in increasing numbers of studies. The goal of this research is to learn more about the potential roles of circRNAs in HF.@*METHODS & RESULTS@#We used RNA sequencing data to identify the characteristics of circRNAs expressed in the heart and discovered that the majority of circRNAs screened were less than 2000 nt. Additionally, chromosomes One and Y had the most and least number of circRNAs, respectively. After excluding duplicate host genes and intergenic circRNAs, a total of 238 differentially expressed circRNAs (DECs) and 203 host genes were discovered. However, only four of the 203 host genes of DECs were examined in HF differentially expressed genes. Another study used Gene Oncology analysis of DECs host genes to elucidate the underlying pathogenesis of HF, and it found that binding and catalytic activity accounted for a large portion of DECs. Immune system, metabolism, and signal transduction pathways were significantly enriched. Furthermore, 1052 potentially regulated miRNAs from the top 40 DECs were collected to build a circRNA-miRNA network, and it was discovered that 470 miRNAs can be regulated by multiple circRNAs, while others are regulated by a single circRNA. In addition, a comparison of the top 10 mRNAs in HF and their targeted miRNAs revealed that DDX3Y and UTY were regulated by the most and least circRNA, respectively.@*CONCLUSION@#These findings demonstrated circRNAs have species and tissue specific expression patterns; while circRNA expression is independent on host genes, the same types of genes in DECs and DEGs worked in HF. Our findings would contribute to a better understanding of the critical roles of circRNAs and lay the groundwork for future studies of HF molecular functions.

9.
Cell Death Dis ; 13(4): 318, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393391

ABSTRACT

Neuroinflammation occurs early in Alzheimer's disease (AD). The initial stage of AD is related to glial dysfunction, which contributes to impairment of Aß clearance and disruption of synaptic connection. CEBPß, a member of the CCAAT-enhancer-binding protein (CEBP) family, modulates the expression of inflammation-associated genes, and its expression is elevated in brains undergoing degeneration and injured brains. However, the mechanism underlying CEBPß-mediated chronic inflammation in AD is unclear. In this study, we observed that increases in the levels of nuclear CEBPß facilitated the interaction of CEBPß with the NFκB p65 subunit, increasing the transcription of proinflammatory cytokines in the APP/PS1 mouse brain. Oral administration of nanocarrier-packaged carnosic acid (CA) reduced the aberrant activation of microglia and astrocytes and diminished mature IL-1ß, TNFα and IL-6 production in the APP/PS1 mouse brain. CA administration reduced ß-amyloid (Aß) deposition and ameliorated cognitive impairment in APP/PS1 mice. We observed that CA blocked the interaction of CEBPß with NFκB p65, and chromatin immunoprecipitation revealed that CA reduced the transcription of the NFκB target genes TNFα and IL-6. We confirmed that CA alleviated inflammatory mediator-induced neuronal degeneration and reduced Aß secretion by inhibiting the CEBPß-NFκB signalling pathway in vitro. Sulfobutyl ether-beta-cyclodextrin (SBEßCD) was used as the encapsulation agent for the CA-loaded nanocarrier to overcome the poor water solubility and enhance the brain bioavailability of CA. The CA nanoparticles (NPs) had no obvious toxicity. We demonstrated a feasible SBEßCD-based nanodelivery system targeting the brain. Our data provide experimental evidence that CA-loaded NPs are potential therapeutic agents for AD treatment.


Subject(s)
Alzheimer Disease , Abietanes , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cognition , Disease Models, Animal , Inflammation/drug therapy , Interleukin-6 , Mice , Mice, Transgenic , Microglia/metabolism , Neuroinflammatory Diseases , Presenilin-1 , Tumor Necrosis Factor-alpha/metabolism
10.
Int Immunopharmacol ; 102: 107188, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34407915

ABSTRACT

Long, noncoding RNAs reportedly play vital roles in tuberculosis (TB). For example, upregulation of LINC00870 has been observed in tuberculosis, though its role and underlying mechanism remains unclear. In this study, we investigated the expression and effect of LINC00870 in Mycobacterium tuberculosis (MTB) infection by comparing MTB-infected peripheral blood mononuclear cells (PBMCs) with controls. The results showed LINC00870 was significantly increased in MTB infected PBMCs. Additionally, LINC00870 overexpression inhibited Th1-secreted cytokines while promoted Th2-secreted cytokine in MTB-infected PBMCs. Furthermore, LINC00870 promoted p-STAT5 and p-JAK2 protein expression, thus activating JAK/STAT signaling in MTB-infected PBMCs. Sputum and plasma samples were obtained from TB, latent tuberculosis infection (LTBI) patients and healthy controls. The qRT-PCR results showed higher levels of LINC00870 in the sputum and plasma from TB and LTBI patients compared to healthy controls. In addition, LINC00870 were decreased in both TB and LTBI patients after three month of therapy, respectively. The results showed a correlation between LINC00870 inhibition and Th1/Th2, as well as JAK/STAT signaling pathway in PBMCs from active TB patients. In conclusion, higher levels of LINC00870 in tuberculosis might be associated with Th1/Th2-related immune responses by activating JAK/STAT signaling. LINC00870 thus may be a novel biomarker for diagnosing and treating tuberculosis.


Subject(s)
Janus Kinase 2/metabolism , Mycobacterium tuberculosis , RNA, Long Noncoding , STAT5 Transcription Factor/metabolism , Tuberculosis , Adult , Cells, Cultured , Cytokines/metabolism , Female , Humans , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/microbiology , Male , Middle Aged , Sputum , Tuberculosis/blood , Tuberculosis/genetics , Tuberculosis/metabolism , Tuberculosis/microbiology , Young Adult
11.
Protein & Cell ; (12): 360-378, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929162

ABSTRACT

Rice stripe virus (RSV) transmitted by the small brown planthopper causes severe rice yield losses in Asian countries. Although viral nuclear entry promotes viral replication in host cells, whether this phenomenon occurs in vector cells remains unknown. Therefore, in this study, we systematically evaluated the presence and roles of RSV in the nuclei of vector insect cells. We observed that the nucleocapsid protein (NP) and viral genomic RNAs were partially transported into vector cell nuclei by utilizing the importin α nuclear transport system. When blocking NP nuclear localization, cytoplasmic RSV accumulation significantly increased. In the vector cell nuclei, NP bound the transcription factor YY1 and affected its positive regulation to FAIM. Subsequently, decreased FAIM expression triggered an antiviral caspase-dependent apoptotic reaction. Our results reveal that viral nuclear entry induces completely different immune effects in vector and host cells, providing new insights into the balance between viral load and the immunity pressure in vector insects.


Subject(s)
Animals , Cell Nucleus , Hemiptera/metabolism , Insect Vectors/genetics , Insecta , Nucleocapsid Proteins/metabolism , Oryza , Plant Diseases , Tenuivirus/metabolism , Virus Replication
12.
Protein & Cell ; (12): 513-531, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-939859

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.


Subject(s)
Animals , Humans , Male , China , Genomics , Pesticides , Spodoptera/genetics , Transcriptome
13.
Blood Adv ; 5(14): 2863-2878, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34297045

ABSTRACT

Tumor-associated macrophages (TAMs) are recognized as a hallmark of certain solid cancers and predictors of poor prognosis; however, the functional role of TAMs in lymphoid malignancies, including B-cell lymphoma, has not been well defined. We identified infiltration of F4/80+ TAMs in a syngeneic mouse model using the recently generated murine mantle cell lymphoma (MCL) cell line FC-muMCL1. Multicolor flow cytometric analysis of syngeneic lymphoma tumors showed distinct polarization of F4/80+ TAMs into CD206+ M2 and CD80+ M1 phenotypes. Using human MCL cell lines (Mino, Granta, and JVM2), we further showed that MCL cells polarized monocyte-derived macrophages toward an M2-like phenotype, as assessed by CD163+ expression and increased interleukin-10 (IL-10) level; however, levels of the M1 markers CD80 and IL-12 remained unaffected. To show that macrophages contribute to MCL tumorigenesis, we xenografted the human MCL cell line Mino along with CD14+ monocytes and compared tumor growth between these 2 groups. Results showed that xenografted Mino along with CD14+ monocytes significantly increased the tumor growth in vivo compared with MCL cells alone (P < .001), whereas treatment with liposomal clodronate (to deplete the macrophages) reversed the effect of CD14+ monocytes on growth of MCL xenografts (P < .001). Mechanistically, IL-10 secreted by MCL-polarized M2-like macrophages was found to be responsible for increasing MCL growth by activating STAT1 signaling, whereas IL-10 neutralizing antibody or STAT1 inhibition by fludarabine or STAT1 short hairpin RNA significantly abolished MCL growth (P < .01). Collectively, our data show the existence of a tumor microenvironmental network of macrophages and MCL tumor and suggest the importance of macrophages in interventional therapeutic strategies against MCL and other lymphoid malignancies.


Subject(s)
Lymphoma, Mantle-Cell , Adult , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Macrophages , Mice , Tumor-Associated Macrophages
14.
J Thorac Dis ; 13(5): 2803-2811, 2021 May.
Article in English | MEDLINE | ID: mdl-34164172

ABSTRACT

BACKGROUND: Due to submucosal infiltration's biological nature along the airway, adenoid cystic carcinoma (ACC) frequently leaves positive surgical margins. This study evaluated the clinicopathologic, and computed tomography (CT) features for predicting surgical margin status in central airway ACC. METHODS: We retrospectively analyzed the files of 71 patients with ACC of the central airway proven by histopathology and surgery who had presented between January 2010 and December 2018. All patients were classified into positive and negative surgical margin groups according to margin status. Univariate analysis and multivariable logistic regression models were then performed to compare demography, histopathology, and CT characteristics between ACC patients with positive and negative margins. RESULTS: After surgical resection, 59 (83.1%) patients had positive margins, and 12 (16.9%) had negative margins. The contrast-enhanced CT (CECT) longitudinal tail sign (LTS) was identified in 55 of 59 (93.2%) patients with positive margins and was the only feature that had a significant association with positive margins (odds ratio 41.250, 95% CI: 7.886-215.767; P<0.001). Moreover, positive margins in upper or/and lower directions were associated with the LTS in corresponding directions (P<0.001). CONCLUSIONS: Most central airway ACC patients exhibited positive margins following surgery. The appearance of the LTS on CECT was significantly associated with positive margins and could help preoperatively predict the submucosal invasion of ACC.

15.
Eur J Radiol ; 140: 109746, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33992979

ABSTRACT

PURPOSE: To evaluate computed tomography (CT) features and establish a predictive model for the clinical diagnosis and prognosis of tracheal adenoid cystic carcinoma (ACC). METHOD: From January 2010 to December 2018, 82 patients with tracheal tumors, including 46 patients with ACC confirmed by surgery and histopathology, were enrolled in this study. These patients' clinicopathologic information, CT features and survival outcomes were recorded and analyzed. Independent predictors of diagnosis and prognosis of tracheal ACC were determined by both univariate and multivariate analyses. RESULTS: Compared with tracheal non-ACC patients, univariate analysis showed that ACC patients were more likely to have extensive longitudinal length (p < 0.001) and to appear as annular wall thickening (p = 0.001), transmural growth (p = 0.036), poorly defined border (p = 0.003) and mild enhancement (p = 0.001). Multivariate logistic analysis showed that longitudinal length and enhancement degree were independent predictors of tracheal ACC. The 3-year and 5-year disease-free survival (DFS) were 75.7 % and 64.5 %, respectively. Longitudinal length (≥ 34 mm), transverse length (≥ 20 mm) and transmural growth were associated with poor DFS in univariate analysis. After multivariate adjustment, only transverse length (≥ 20 mm) was an adverse prognostic factor for DFS (hazard ratio = 4.594, 95 % confidence interval = 1.240-17.017; p = 0.022). CONCLUSIONS: CT longitudinal length and enhancement degree of tumors showed satisfactory discrimination for tracheal ACC. Excessive CT transverse length might be an unfavorable indicator for ACC recurrence and could be helpful for predicting the survival outcomes of ACC at the initial diagnosis.


Subject(s)
Carcinoma, Adenoid Cystic , Tracheal Neoplasms , Carcinoma, Adenoid Cystic/diagnostic imaging , Humans , Neoplasm Recurrence, Local , Prognosis , Retrospective Studies , Tomography, X-Ray Computed , Tracheal Neoplasms/diagnostic imaging
16.
Pain ; 162(10): 2599-2612, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33872235

ABSTRACT

ABSTRACT: Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.


Subject(s)
Antineoplastic Agents , Cognitive Dysfunction , Peripheral Nervous System Diseases , Animals , Antineoplastic Agents/toxicity , Disease Models, Animal , Humans , Leucine Zippers , Mice , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Quality of Life
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-906311

ABSTRACT

Objective:To explore the macroscopic medication rule of Chinese medicine for the treatment of primary liver cancer and provide references for clinical medication. Method:The databases of CNKI,VIP, and Wanfang Data were searched for research articles published from September 1959 to June 2019 with the terms of "Chinese medicine" and "liver cancer". A database was established based on the collected Chinese medicinal prescriptions for the treatment of primary liver cancer. The frequency,clustering, and association rules were analyzed by Excel, etc. Result:In this study,106 effective articles were included,and after the modified prescriptions were removed, 92 effective prescriptions were screened out,involving 281 Chinese herbal medicines used for 1 181 times in total. The top 5 high-frequency drugs were Poria (deficiency-tonifying),Astragali Radix (heat-clearing),Bupleuri Radix (blood-activating and stasis-resolving),Paeoniae Radix Alba (urination-promoting and dampness-draining), and Codonopsis Radix (Qi-regulating). The analysis of drug flavor with a frequency higher than 10 showed that most of the drugs were sweet,bitter, and pungent in flavor,cold,warm, and plain in nature,and acted on spleen and liver meridians. Four combinations and 10 herbal pairs were obtained by the cluster analysis of high-frequency drugs and association analysis, respectively. The high-frequency drugs and potential herbal pairs were classified targeting the specific clinical syndromes in different stages of liver cancer. Conclusion:Replenishing Qi, invigorating spleen,clearing heat, removing toxin,activating blood, and resolving stasis were the basic principles for the treatment of primary liver cancer. The combination of those drugs was the main therapeutic strategy. In addition,the resulting 10 potential herbal pairs from high-frequency drugs and cluster analysis could inspire the clinical treatment of primary liver cancer in different clinical stages with various clinical syndromes, which was of reference value for the clinical medication.

20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-921710

ABSTRACT

This study aims to explore the mechanism of fresh Phragmitis Rhizoma against chronic bronchitis airway inflammation. The SD rats of SPF grade were divided into control group, model group, Guilongkechuanning group(GLKCN, 1.125 g·kg~(-1)), high-dose fresh Phragmitis Rhizoma group(LG-HD, 15 g·kg~(-1)), and low-dose fresh Phragmitis Rhizoma group(LG-LD, 7.5 g·kg~(-1)). The chronic bronchitis models of rats in other groups except the control group were induced by the modified smoking method. From the 15 th day of modeling, the rats were given corresponding agents by gavage for 20 consecutive days. After the last administration, the rats were sacrificed for sample collection. Enzyme-linked immunosorbent assay(ELISA) was employed to detect serum transforming growth factor-β(TGF-β) and interleukin-6(IL-6) levels. The protein expression of TGF-β, IL-1β and IL-6 in lung tissue was detected by immunohistochemical method. Masson staining was performed to detect collagen fibers and muscle fibers in lung tissue, and HE staining to detect the pathological changes of lung tissue. Human bronchial epithelial(16 HBE) cells were cultured in vitro, and CCK-8(cell counting kit-8) method was used to detect the cytotoxicity of cigarette smoke extract(CSE) and fresh Phragmitis Rhizoma. After the exposure of 16 HBE cells to 3.5% CSE and appropriate concentration(800, 400 μg·mL~(-1)) of fresh Phragmitis Rhizoma for 24 h, quantitative real-time PCR was conducted to determine the mRNA levels of TGF-β and IL-1β, and Western blot was employed to determine the protein levels of TGF-β and IL-6 in the cells. The rat model of chronic bronchitis induced by smoking was successfully established. Fresh Phragmitis Rhizoma reduced serum TGF-β and IL-6 levels, down-regulated the protein levels of TGF-β, IL-1β, and IL-6 in lung tissue, and alleviated pathological changes and fibrotic lesions in lung tissue. Moreover, it down-regulated the CSE-induced protein expression of TGF-β and IL-6 as well as the mRNA level of TGF-β in 16 HBE cells. These results indicated that fresh Phragmitis Rhizoma could prevent airway inflammation from chronic bronchitis and promote cell repair by inhibiting the TGF-β signaling pathway.


Subject(s)
Animals , Rats , Bronchitis, Chronic/genetics , Drugs, Chinese Herbal/pharmacology , Inflammation , Lung , Poaceae/chemistry , Rats, Sprague-Dawley , Rhizome , Signal Transduction , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...