Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 97: 96-107, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26447683

ABSTRACT

Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.


Subject(s)
Arabidopsis/enzymology , Nicotiana/metabolism , Nitrates/metabolism , Nitrite Reductases/metabolism , Nitrites/metabolism , Arabidopsis/genetics , Chlorophyll/metabolism , Gene Expression , Nitrite Reductases/genetics , Nitrogen/metabolism , Phenotype , Plant Leaves/genetics , Plant Leaves/metabolism , Plants, Genetically Modified , Plastids/metabolism , Promoter Regions, Genetic , Nicotiana/genetics
2.
Plant Physiol ; 152(2): 602-19, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939942

ABSTRACT

The presence of cytosolic and plastidic pathways of carbohydrate oxidation is a characteristic feature of plant cell metabolism. Ideally, steady-state metabolic flux analysis, an emerging tool for creating flux maps of heterotrophic plant metabolism, would capture this feature of the metabolic phenotype, but the extent to which this can be achieved is uncertain. To address this question, fluxes through the pathways of central metabolism in a heterotrophic Arabidopsis (Arabidopsis thaliana) cell suspension culture were deduced from the redistribution of label in steady-state (13)C-labeling experiments using [1-(13)C]-, [2-(13)C]-, and [U-(13)C(6)]glucose. Focusing on the pentose phosphate pathway (PPP), multiple data sets were fitted simultaneously to models in which the subcellular compartmentation of the PPP was altered. The observed redistribution of the label could be explained by any one of three models of the subcellular compartmentation of the oxidative PPP, but other biochemical evidence favored the model in which the oxidative steps of the PPP were duplicated in the cytosol and plastids, with flux through these reactions occurring largely in the cytosol. The analysis emphasizes the inherent difficulty of analyzing the PPP without predefining the extent of its compartmentation and the importance of obtaining high-quality data that report directly on specific subcellular processes. The Arabidopsis flux map also shows that the potential ATP yield of respiration in heterotrophic plant cells can greatly exceed the direct metabolic requirements for biosynthesis, highlighting the need for caution when predicting flux through metabolic networks using assumptions based on the energetics of resource utilization.


Subject(s)
Arabidopsis/metabolism , Models, Biological , Pentose Phosphate Pathway , Carbon Isotopes/metabolism , Cells, Cultured , Isotope Labeling
3.
Phytochemistry ; 68(16-18): 2176-88, 2007.
Article in English | MEDLINE | ID: mdl-17499825

ABSTRACT

The aim of this study was to test the assumption that (13)C-enrichment of respiratory substrate does not perturb metabolism. Cell suspension cultures of Arabidopsis thaliana were grown in MS medium containing unlabelled glucose (with (13)C at natural abundance), 100% [1-(13)C]glucose, 100% [U-(13)C(6)]glucose or 10% [U-(13)C(6)]glucose plus 90% unlabelled glucose. There was no significant difference in the metabolism of [U-(14)C]glucose between the cultures. Similarly, the pattern of (14)CO(2) release from specifically labelled [(14)C]-substrates was unaffected. Principal component analysis of (13)C-decoupled (1)H NMR metabolite fingerprints of cell extracts was unable to discriminate between the different culture conditions. It is concluded that (13)C-enrichment of the growth substrate has no effect on flux through the central pathways of carbon metabolism in higher plants. This conclusion supports the implicit assumption in metabolic flux analysis that steady-state (13)C-labelling does not perturb fluxes through the reactions of the metabolic network it seeks to quantify.


Subject(s)
Arabidopsis/metabolism , Carbon Isotopes/metabolism , Arabidopsis/chemistry , Carbon Dioxide/metabolism , Cells, Cultured , Culture Media , Glucose/metabolism , Multivariate Analysis , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Plant Extracts/chemistry
4.
Phytochemistry ; 68(16-18): 2189-96, 2007.
Article in English | MEDLINE | ID: mdl-17524437

ABSTRACT

Steady-state stable isotope labelling provides a method for generating flux maps of the compartmented network of central metabolism in heterotrophic plant tissues. Theoretical analysis of the contribution of the vacuole to the regeneration of glucose by endogenous processes shows that numerical fitting of isotopomeric data will only generate an accurate map of the fluxes involving intracellular glucose if information is available on the labelling of both the cytosolic and vacuolar glucose pools. In the absence of this information many of the calculated fluxes are at best unreliable or at worst indeterminate. This result suggests that the anomalously high rates of sucrose cycling and glucose resynthesis that have been reported in earlier steady-state analyses of tissues labelled with (13)C-glucose precursors may be an artefact of assuming that the labelling pattern of extracted glucose reflected the labelling of the cytosolic pool. The analysis emphasises that although subcellular information can sometimes be deduced from a steady-state analysis without recourse to subcellular fractionation, the success of this procedure depends critically on the structure of the metabolic network. It is concluded that methods need to be implemented that will allow measurement of the subcellular labelling pattern of glucose and other metabolites, as part of the routine analysis of the redistribution of label in steady-state stable isotope labelling experiments, if the true potential of network flux analysis for generating metabolic phenotypes is to be realized.


Subject(s)
Glucose/metabolism , Models, Biological , Plants/metabolism , Sucrose/metabolism , Vacuoles/metabolism , Carbon Isotopes , Cell Compartmentation , Glycolysis/physiology
5.
Electrophoresis ; 27(2): 495-507, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16358359

ABSTRACT

In an effort to determine the best extraction procedure compatible with the high-reproducible 2-DE, different methods of soluble protein extraction from Arabidopsis cell culture suspensions grown in Gamborg B5 medium were tested. A reference 2-DE map was established for this soluble extract revealing 1184 spots. The most abundant protein spots were excised, trypsin-digested, and mass spectra obtained via MALDI-TOF and/or LC coupled to ESI-MS. Three hundred and thirty one proteins were identified and their functions were defined based on sequence comparisons and classified in different protein families. In order to analyze the impact of culture medium on the Arabidopsis proteome, we performed the 2-DE map from Arabidopsis cell suspensions cultured in another growth medium Murashige and Skoog (M-S) and 327 major spots were identified. Using PDQuest imaging analysis, significant increases in the amount of several housekeeping enzymes, stress/defense proteins, and heat shock proteins were found in M-S medium. Modified expression of certain proteins and detection of new isoforms involved in nitrate assimilation, nitrogen, and sulfur metabolism were also observed in the M-S medium. This study provides the first 2-DE maps of the soluble proteome of Arabidopsis cell suspensions. The comparative analysis of the Arabidopsis proteome in respect to different nutrient supplies shows that the culture medium may significantly influence the expression pattern of major soluble proteins in Arabidopsis cells. This work also constitutes an important step for further proteomic analysis concerning cell responses to abiotic or biotic stresses.


Subject(s)
Arabidopsis Proteins/analysis , Proteome/analysis , Arabidopsis , Cells, Cultured , Culture Media/chemistry , Electrophoresis, Gel, Two-Dimensional
6.
Photochem Photobiol ; 75(4): 377-81, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12003127

ABSTRACT

The relationship between the structural and functional changes of the photosynthetic apparatus in the flower bud of Lilium longiflorum during chloroplast-chromoplast transition was examined. Compared with green petals, there was a five-fold increase of the carotenoid content in yellow petals, whereas the chlorophyll content decreased five-fold. Absorption and emission fluorescence spectra of chromoplasts indicated that newly synthesized carotenoids were not associated with photosystem II (PSII) photochemistry. The maximum quantum yield in the remaining PSII reaction centers remained constant during the chromoplast formation, whereas the photosynthetic electron transport beyond PSII became inhibited, as indicated by a marked decrease of the O2 evolution capacity, of the photochemical quenching of chlorophyll-alpha fluorescence and of the operational quantum yield of photosynthetic electron transport. Deconvoluted fluorescence emission spectra indicated a more rapid degradation of photosystem I (PSI) complexes than of PSII during chromoplast formation. Compared with green petals, the spillover between PSII and PSI decreased by approximately 40% in yellow petals. Our results indicate that during chloroplast-chromoplast transition in the flower bud of L. longiflorum, PSII integrity was preserved longer than the rest of the photosynthetic apparatus.


Subject(s)
Lilium/physiology , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Light-Harvesting Protein Complexes , Photosystem I Protein Complex , Photosystem II Protein Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...