Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Insect Biochem Mol Biol ; 28(4): 229-37, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9684331

ABSTRACT

Incorporation of genes encoding proteinase inhibitors into oilseed rape genome could confer resistance to Coleoptera, which are the major pests on rape in Europe. A detailed study of the digestive proteinase of a model cruciferous-feeding Coleoptera, Phaedon cochleariae, showed that this insect relies on a complex proteolytic system including serine, cysteine, aspartyl proteinases, and leucine aminopeptidases. The inhibition of general and specific activities by a range of proteinase inhibitors in vitro suggested that oryzacystatin I (OCI) and Bowman-Birk inhibitor (BBI) would have adverse effects when ingested by the larvae. However, the growth and the feeding of larvae reared on oilseed rape leaf discs treated with a high dose of OCI and/or BBI were not affected. Moreover, the levels and patterns of proteolytic activities were not modified in these larvae. The study of the interactions between P. cochleariae larval proteinases and OCI and BBI revealed that both inhibitors were rapidly cleaved by serine proteinases in association with leucine aminopeptidases, and consequently lost their inhibitory capacity. This mechanism of resistance is very efficient, and may be widespread among Coleoptera. The major implications for insect control using proteinase inhibitor-based strategies are discussed.


Subject(s)
Coleoptera/physiology , Crops, Agricultural/genetics , Genome, Plant , Insect Control , Protease Inhibitors/metabolism , Animals , Endopeptidases/metabolism , Plants, Edible/genetics
2.
J Insect Physiol ; 44(3-4): 263-270, 1998 Mar.
Article in English | MEDLINE | ID: mdl-12769960

ABSTRACT

The resistance of a transgenic line of oilseed rape expressing constitutively the cysteine proteinase inhibitor oryzacystatin I (OCI) was assessed against Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). The levels of OCI expression in the transformed line averaged 0.2% and 0.05% of total soluble protein in leaves and petioles respectively. In vitro analyses showed that P. chrysocephala larvae use both cysteine and serine proteinases for protein digestion, and that all the cysteine proteolytic activity is OCI-sensitive. However, bioassays showed that adults fed identically on leaf discs from control or transformed plants. When larvae were reared on transgenic plants expressing OCI, they showed an increase in weight gain compared to those reared on control plants. Furthermore, those larvae from transgenic plants exhibited a 2-fold increase in both cysteine and serine proteolytic activity as a reponse to the presence of OCI. The plasticity of insect digestive physiology and feeding behaviour are discussed, as well as the relevance of engineering a genotype expressing both types of proteinase inhibitors.

3.
Chem Senses ; 22(4): 391-8, 1997 Aug.
Article in English | MEDLINE | ID: mdl-9279462

ABSTRACT

The coupled gas chromatography-proboscis extension assay technique was used on restrained worker bees to study responses to components of an extract of oilseed rape floral volatiles. Bees were stimulated with the effluent from the gas chromatograph after either paired or unpaired conditioning to the extract, or after a control treatment. Proboscis extension activity was elicited in six areas of the chromatogram. However, the number of bees responding in two of these areas were too low to be considered in the present study. One significant area of activity was associated with the major component, (E,E)-alpha-farnesene, whilst the others were associated with several minor components. Although all three groups of bees, irrespective of the treatments applied, showed some responses to the components eluting from the GC column, only bees subjected to paired conditioning consistently responded when re-tested to the mixture. In addition, paired conditioning increased the responsiveness of individuals in terms of the number of bees responding at least once to the effluent from the gas chromatograph. This work confirmed the occurrence of key compounds in floral volatile mixtures. Possible synergistic/inhibitory effects between components, relating to olfactory experience, are discussed.


Subject(s)
Bees/physiology , Conditioning, Classical/physiology , Discrimination, Psychological/drug effects , Discrimination, Psychological/physiology , Oils, Volatile/pharmacology , Plant Oils/chemistry , Animals , Chromatography, Gas/methods , Conditioning, Classical/classification , Conditioning, Classical/drug effects , Pheromones/pharmacology , Sesquiterpenes/pharmacology , Stimulation, Chemical , Taste/drug effects , Taste/physiology
4.
J Chem Ecol ; 20(12): 3221-31, 1994 Dec.
Article in English | MEDLINE | ID: mdl-24241988

ABSTRACT

A novel technique for the simultaneous monitoring of electroan-tennogram (EAG) and conditioned proboscis extension (CPE) responses of honey bees to the effluent from a gas chromatograph (GC) was developed to locate biologically active components in blends of plant volatiles and to investigate odor recognition at the peripheral and behavioral levels. A six-component mixture, comprising compounds previously identified as oilseed rape floral volatiles, was used as the stimulus. Standard CPE and EAG recordings were done as a reference. EAG responses were elicited from unconditioned bees by all the components presented either in the coupled or the standard mode. Conditioned bees gave larger EAG responses than unconditioned bees, suggesting that antennal sensitivity is enhanced by conditioning. At the behavioral level, in both the standard and the coupled modes, only conditioned bees showed the proboscis extension response, with the majority of individuals responding to linalool, 2-phenylethanol, and benzyl alcohol.

SELECTION OF CITATIONS
SEARCH DETAIL
...