Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 63(14): 3669-80, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25801210

ABSTRACT

Crop nitrogen status is a major issue for crop yield and quality. It is usually assessed by destructive leaf or petiole tissue analysis. A quantitative nondestructive optical estimation of N sufficiency would be a great leap forward toward precision crop management. We therefore calibrated three optical indices against leaf nitrogen content: chlorophyll (Chl), epidermal flavonols, and the nitrogen balance index (NBI), which is the ratio of the former two indices. NBI was the best estimator of leaf N content measured by the Dumas or Kjeldahl method with a root-mean-square error smaller than 2 mg of N g(-1) dry weight, followed by Chl (3 mg g(-1)) and flavonols (4 mg g(-1)). This allowed us to propose the threshold values for the Dualex optical indices that characterize nitrogen supply to grapevines: the first is the threshold below which N supply to the vine can be considered deficient, and the second is the threshold above which N supply is excessive. For a putative optimal N content of 30 mg g(-1) < x < 40 mg g(-1), these thresholds are 30 µg cm(-2) < x < 40 µg cm(-2) for Chl and 11 < x < 18 for NBI at flowering. At bunch closure, for N thresholds of 22 < x < 32, Chl is 29 < x < 37 and NBI is 8 < x < 11, in respective units. These values should be verified and refined in the future for various growth regions and cultivars using the specified protocol. The sample size should be 36-60 leaves from a fixed node position, preferably node no. 5 from the tip of the shoot. An alternative to the use of the NBI would be to discard leaves that are not light exposed by checking their flavonol content and to deduce the N sufficiency directly from the Chl values.


Subject(s)
Chemistry Techniques, Analytical/methods , Nitrogen/analysis , Plant Leaves/chemistry , Vitis/chemistry , Chemistry Techniques, Analytical/instrumentation
2.
Anal Chim Acta ; 621(1): 8-18, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18573364

ABSTRACT

The potential of front-face spectroscopy for grape ripening dates discrimination was investigated on Cabernet Franc grapes from three parcels located on the Loire Valley and for six ripening dates. The 18 batches were analysed by front-face fluorescence spectroscopy and visible spectroscopy. The excitation spectra (250-310nm, emission wavelength=350nm) were characterised by a shoulder at 280nm. Grapes spectra were classified by factorial discriminant analysis (FDA). Ripening dates were well predicted by fluorescence spectra: grapes before veraison were separated from grapes after veraison and almost every ripening date was identified. The common spectroscopic space obtained by CCSWA showed that wavelengths corresponding to anthocyanin absorption in the visible were correlated to fluorescence wavelengths around the starting and ending points of the shoulder (263 and at 292nm). Then, regression models were investigated to predict total soluble solids (TSS), total acidity, malvidin-3G, total anthocyanins and total phenolics content from visible and fluorescence spectra. To predict technological indicators (TSS and total acidity), the PLS model with visible spectra (RMSECV=0.82 degrees Brix or 0.96gL(-1) H(2)SO(4)) was better than those with fluorescence one (RMSECV=1.39 degrees Brix or 2.06gL(-1) H(2)SO(4)). For malvidin-3G and total anthocyanins, all R(c)(2) and R(cv)(2) were superior to 0.90 and RMSECV were low. Visible and fluorescence spectroscopies succeeded in predicting anthocyanin content. Concerning total phenolic, the best prediction was provided by fluorescence spectroscopy.


Subject(s)
Fluorescent Dyes , Spectrum Analysis/methods , Vitis/chemistry , Vitis/growth & development , France
SELECTION OF CITATIONS
SEARCH DETAIL
...