Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Invest New Drugs ; 40(2): 322-329, 2022 04.
Article in English | MEDLINE | ID: mdl-34843005

ABSTRACT

BACKGROUND: EPI-506 is the first of a new class of drugs targeting the N-terminal domain (NTD) of the androgen receptor (AR), potentially overcoming known resistance mechanisms to androgen receptor pathway inhibitors (ARPIs) among men with metastatic castration resistant prostate cancer (mCRPC). METHODS: Patients with mCRPC who had progressed on prior ARPI were enrolled in this phase 1 open-label, adaptive 3 + 3 dose escalation study. The primary outcome was safety and tolerability of oral EPI-506. Secondary objectives included determination of the maximal tolerated dose (MTD), pharmacokinetic profile, and antitumor efficacy. RESULTS: 28 mCRPC patients were enrolled into 7 dose cohorts of EPI-506 ranging from 80-3600 mg given once daily and 1800 mg given twice daily. Six DLTs occurred in 4 patients; Grade 4 elevated amylase; Grade 3 abdominal pain; Grade 3 elevated ALT and Grade 3 elevated AST; Grade 2 nausea and Grade 1 vomiting which resulted in study drug intake of < 75% of the expected dose during the DLT assessment period. The most common drug-related adverse events included diarrhea, nausea and fatigue. Six patients had a PSA decline not meeting PSA response criteria. The study was terminated prior to reaching the MTD due to poor oral bioavailability. CONCLUSIONS: This phase 1 trial established the safety of EPI-506 and provides proof of concept for targeting the AR NTD. Next generation compounds with improved bioavailability and potency are in clinical development.


Subject(s)
Androgen Receptor Antagonists , Benzhydryl Compounds , Chlorohydrins , Prostatic Neoplasms, Castration-Resistant , Androgen Receptor Antagonists/adverse effects , Benzhydryl Compounds/adverse effects , Chlorohydrins/adverse effects , Humans , Male , Nausea/chemically induced , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen , Treatment Outcome
2.
Sci Transl Med ; 13(587)2021 03 31.
Article in English | MEDLINE | ID: mdl-33790022

ABSTRACT

The development and survival of cancer cells require adaptive mechanisms to stress. Such adaptations can confer intrinsic vulnerabilities, enabling the selective targeting of cancer cells. Through a pooled in vivo short hairpin RNA (shRNA) screen, we identified the adenosine triphosphatase associated with diverse cellular activities (AAA-ATPase) valosin-containing protein (VCP) as a top stress-related vulnerability in acute myeloid leukemia (AML). We established that AML was the most responsive disease to chemical inhibition of VCP across a panel of 16 cancer types. The sensitivity to VCP inhibition of human AML cell lines, primary patient samples, and syngeneic and xenograft mouse models of AML was validated using VCP-directed shRNAs, overexpression of a dominant-negative VCP mutant, and chemical inhibition. By combining mass spectrometry-based analysis of the VCP interactome and phospho-signaling studies, we determined that VCP is important for ataxia telangiectasia mutated (ATM) kinase activation and subsequent DNA repair through homologous recombination in AML. A second-generation VCP inhibitor, CB-5339, was then developed and characterized. Efficacy and safety of CB-5339 were validated in multiple AML models, including syngeneic and patient-derived xenograft murine models. We further demonstrated that combining DNA-damaging agents, such as anthracyclines, with CB-5339 treatment synergizes to impair leukemic growth in an MLL-AF9-driven AML murine model. These studies support the clinical testing of CB-5339 as a single agent or in combination with standard-of-care DNA-damaging chemotherapy for the treatment of AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Adenosine Triphosphatases/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Repair , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Valosin Containing Protein
3.
Cells ; 9(5)2020 05 08.
Article in English | MEDLINE | ID: mdl-32397195

ABSTRACT

Numerous studies have shown that alteration of actin remodeling plays a pivotal role in the regulation of morphologic and phenotypic changes leading to malignancy. In the present study, we searched for drugs that can regulate actin polymerization and reverse the malignant phenotype in cancer cells. We developed a cell-free high-throughput screening assay for the identification of compounds that induce the actin polymerization in vitro, by fluorescence anisotropy. Then, the potential of the hit compound to restore the actin cytoskeleton and reverse the malignant phenotype was checked in EWS-Fli1-transformed fibroblasts and in B16-F10 melanoma cells. A ß-carboline extracted from Peganum harmala (i.e., harmine) is identified as a stimulator of actin polymerization through a mechanism independent of actin binding and requiring intracellular factors involved in a process that regulates actin kinetics. Treatment of malignant cells with non-cytotoxic concentrations of harmine induces the recovery of a non-malignant cell morphology accompanied by reorganization of the actin cytoskeleton, rescued cell-cell adhesion, inhibition of cell motility and loss of anchorage-independent growth. In conclusion, harmine induces the reversion of the malignant phenotype by a process involving the modulation of actin dynamics and is a potential anti-tumor agent acting principally through a non-cytotoxic process.


Subject(s)
Actins/metabolism , Carcinogenesis/pathology , Harmine/pharmacology , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Animals , Carcinogenesis/drug effects , Cell Adhesion/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Shape/drug effects , Fibroblasts/drug effects , Fluorescence Polarization , Harmine/chemistry , Humans , Melanoma, Experimental/pathology , Mice , NIH 3T3 Cells , Oncogene Proteins, Fusion/metabolism , Phenotype , Polymerization , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism
4.
ACS Chem Biol ; 14(2): 236-244, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30640450

ABSTRACT

RUVBL1 and RUVBL2 are ATPases associated with diverse cellular activities (AAAs) that form a complex involved in a variety of cellular processes, including chromatin remodeling and regulation of gene expression. RUVBLs have a strong link to oncogenesis, where overexpression is correlated with tumor growth and poor prognosis in several cancer types. CB-6644, an allosteric small-molecule inhibitor of the ATPase activity of the RUVBL1/2 complex, interacts specifically with RUVBL1/2 in cancer cells, leading to cell death. Importantly, drug-acquired-resistant cell clones have amino acid mutations in either RUVBL1 or RUVBL2, suggesting that cell killing is an on-target consequence of RUVBL1/2 engagement. In xenograft models of acute myeloid leukemia and multiple myeloma, CB-6644 significantly reduced tumor growth without obvious toxicity. This work demonstrates the therapeutic potential of targeting RUVBLs in the treatment of cancer and establishes a chemical entity for probing the many facets of RUVBL biology.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Benzamides/pharmacology , Carrier Proteins/antagonists & inhibitors , DNA Helicases/antagonists & inhibitors , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , HCT116 Cells , Humans , Mutation , Protein Binding
5.
Mol Cancer Ther ; 16(11): 2375-2386, 2017 11.
Article in English | MEDLINE | ID: mdl-28878026

ABSTRACT

Inhibition of the AAA ATPase, p97, was recently shown to be a novel method for targeting the ubiquitin proteasome system, and CB-5083, a first-in-class inhibitor of p97, has demonstrated broad antitumor activity in a range of both hematologic and solid tumor models. Here, we show that CB-5083 has robust activity against multiple myeloma cell lines and a number of in vivo multiple myeloma models. Treatment with CB-5083 is associated with accumulation of ubiquitinated proteins, induction of the unfolded protein response, and apoptosis. CB-5083 decreases viability in multiple myeloma cell lines and patient-derived multiple myeloma cells, including those with background proteasome inhibitor (PI) resistance. CB-5083 has a unique mechanism of action that combines well with PIs, which is likely owing to the p97-dependent retro-translocation of the transcription factor, Nrf1, which transcribes proteasome subunit genes following exposure to a PI. In vivo studies using clinically relevant multiple myeloma models demonstrate that single-agent CB-5083 inhibits tumor growth and combines well with multiple myeloma standard-of-care agents. Our preclinical data demonstrate the efficacy of CB-5083 in several multiple myeloma disease models and provide the rationale for clinical evaluation as monotherapy and in combination in multiple myeloma. Mol Cancer Ther; 16(11); 2375-86. ©2017 AACR.


Subject(s)
Adenosine Triphosphatases/genetics , Indoles/administration & dosage , Multiple Myeloma/drug therapy , Nuclear Proteins/genetics , Nuclear Respiratory Factor 1/genetics , Proteasome Inhibitors/administration & dosage , Pyrimidines/administration & dosage , Adenosine Triphosphatases/antagonists & inhibitors , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Nuclear Proteins/antagonists & inhibitors , Proteasome Endopeptidase Complex/drug effects , Ubiquitin/genetics , Unfolded Protein Response/drug effects , Xenograft Model Antitumor Assays
6.
Neoplasia ; 19(10): 750-761, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28843399

ABSTRACT

B acute lymphoblastic leukemia (B-ALL) cells are distinctively vulnerable to endoplasmic reticulum (ER) stress. Recently, inhibition of p97 was shown to induce ER stress and subsequently cell death in solid tumors and in multiple myeloma. We investigated the role of a novel, orally available, p97 inhibitor (CB-5083; Cleave Biosciences) in B-ALL. CB-5083 induced a significant reduction in viability in 10 human B-ALL cell lines, harboring the most common fusion-genes involved in pediatric and adult B-ALL, with IC50s ranging from 0.34 to 0.76 µM. Moreover, CB-5083 significantly reduced the colony formation of OP1 and NALM6 cells. Early and strong induction of apoptosis was demonstrated in BALL1 and OP1 cells, together with a robust cleavage of PARP. CB-5083 induced ER stress, as documented through: 1) prominent expression of chaperones (GRP78, GRP94, PDI, DNAJC3, and DNAJB9); 2) increased activation of IRE1-alpha, as demonstrated by the splicing of XBP1; and 3) activation of PERK, which resulted in a significant overexpression of CHOP, and its downstream genes. CB-5083 reduced the viability also in GRP78-/-, GRP94-/-, and XBP1-/- cells, suggesting that none of these proteins alone was strictly required for CB-5083 activity. Moreover, we showed that the absence of XBP1 (XBP1-/-) increased the sensitivity to CB-5083, leading to the hypothesis that XBP1 splicing counteracts the activity of CB-5083, probably mitigating ER stress. Finally, vincristine was synergistic with CB-5083 in both BALL1 and OP1 cells. In summary, the targeting of p97 with CB-5083 is a novel promising therapeutic approach that should be further evaluated in B-ALL.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Valosin Containing Protein/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biomarkers , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Drug Synergism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation/drug effects , Gene Knockout Techniques , Humans , Molecular Targeted Therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Signal Transduction/drug effects , Unfolded Protein Response , Valosin Containing Protein/antagonists & inhibitors , Valosin Containing Protein/genetics
7.
J Med Chem ; 58(24): 9480-97, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26565666

ABSTRACT

The AAA-ATPase p97 plays vital roles in mechanisms of protein homeostasis, including ubiquitin-proteasome system (UPS) mediated protein degradation, endoplasmic reticulum-associated degradation (ERAD), and autophagy. Herein we describe our lead optimization efforts focused on in vitro potency, ADME, and pharmaceutical properties that led to the discovery of a potent, ATP-competitive, D2-selective, and orally bioavailable p97 inhibitor 71, CB-5083. Treatment of tumor cells with 71 leads to significant accumulation of markers associated with inhibition of UPS and ERAD functions, which induces irresolvable proteotoxic stress and cell death. In tumor bearing mice, oral administration of 71 causes rapid accumulation of markers of the unfolded protein response (UPR) and subsequently induces apoptosis leading to sustained antitumor activity in in vivo xenograft models of both solid and hematological tumors. 71 has been taken into phase 1 clinical trials in patients with multiple myeloma and solid tumors.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Antineoplastic Agents/chemistry , Indoles/chemistry , Nuclear Proteins/antagonists & inhibitors , Pyrimidines/chemistry , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis , Biological Availability , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Heterografts , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Mice, Nude , Molecular Docking Simulation , Neoplasm Transplantation , Proteasome Endopeptidase Complex/metabolism , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitin/metabolism , Unfolded Protein Response
8.
Cancer Cell ; 28(5): 653-665, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26555175

ABSTRACT

p97 is a AAA-ATPase with multiple cellular functions, one of which is critical regulation of protein homeostasis pathways. We describe the characterization of CB-5083, a potent, selective, and orally bioavailable inhibitor of p97. Treatment of tumor cells with CB-5083 leads to accumulation of poly-ubiquitinated proteins, retention of endoplasmic reticulum-associated degradation (ERAD) substrates, and generation of irresolvable proteotoxic stress, leading to activation of the apoptotic arm of the unfolded protein response. In xenograft models, CB-5083 causes modulation of key p97-related pathways, induces apoptosis, and has antitumor activity in a broad range of both hematological and solid tumor models. Molecular determinants of CB-5083 activity include expression of genes in the ERAD pathway, providing a potential strategy for patient selection.


Subject(s)
Adenosine Triphosphatases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Homeostasis/drug effects , Neoplasms/drug therapy , Nuclear Proteins/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , CRISPR-Cas Systems , Cell Line, Tumor , Endoplasmic Reticulum-Associated Degradation/drug effects , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HEK293 Cells , Humans , Indoles/chemistry , Indoles/pharmacology , K562 Cells , Mice, Nude , Mice, SCID , Molecular Structure , Molecular Targeted Therapy/methods , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitinated Proteins/metabolism , Xenograft Model Antitumor Assays
9.
J Med Chem ; 58(1): 362-75, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25369539

ABSTRACT

The Aurora family of serine/threonine kinases is essential for mitosis. Their crucial role in cell cycle regulation and aberrant expression in a broad range of malignancies have been demonstrated and have prompted intensive search for small molecule Aurora inhibitors. Indeed, over 10 of them have reached the clinic as potential anticancer therapies. We report herein the discovery and optimization of a novel series of tricyclic molecules that has led to SAR156497, an exquisitely selective Aurora A, B, and C inhibitor with in vitro and in vivo efficacy. We also provide insights into its mode of binding to its target proteins, which could explain its selectivity.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinases/antagonists & inhibitors , Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinolones/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Aurora Kinase A/antagonists & inhibitors , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/chemistry , Aurora Kinase B/metabolism , Aurora Kinase C/antagonists & inhibitors , Aurora Kinase C/chemistry , Aurora Kinase C/metabolism , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Female , HCT116 Cells , Humans , Mice, SCID , Models, Chemical , Models, Molecular , Molecular Structure , Neoplasms/drug therapy , Neoplasms/pathology , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolones/chemistry , Quinolones/metabolism , Sf9 Cells , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Xenograft Model Antitumor Assays
10.
J Cell Biol ; 174(7): 985-96, 2006 Sep 25.
Article in English | MEDLINE | ID: mdl-16982800

ABSTRACT

Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria-localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death-inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.


Subject(s)
Apoptosis , Cytomegalovirus Infections/metabolism , Cytomegalovirus/physiology , Immediate-Early Proteins/physiology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Viral Proteins/physiology , Actins/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/drug effects , Cytomegalovirus/genetics , Cytopathogenic Effect, Viral , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Fibroblasts/pathology , Fibroblasts/virology , HeLa Cells , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/toxicity , Mice , Mitochondrial Proteins/genetics , NIH 3T3 Cells , Oxidative Phosphorylation/drug effects , Polymers/metabolism , Viral Proteins/genetics , Viral Proteins/toxicity , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...