Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 979825, 2022.
Article in English | MEDLINE | ID: mdl-36225383

ABSTRACT

Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2 by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4 and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.

2.
Sci Total Environ ; 647: 1058-1068, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30180314

ABSTRACT

Although fires are common disturbances in North American forests, the extent to which soil invertebrate assemblages recover from burning remains unclear. Here, we examine long-term (14- to 101-yr) recoveries of soil invertebrate communities from common cut and burn treatments conducted at 6 to 26-yr intervals since 1911 in a deciduous forest in the upper Great Lakes region (USA). We characterize soil surface macro-invertebrate communities during both fall and spring across a long-term, experimental fire chronosequence to characterize invertebrate community recovery at decadal time-scales and community changes between seasons. We posited that changes in invertebrate community structure might, in turn, impact decomposition process. We sampled active organisms at the soil surface using pitfall traps. We described understory vegetation, measured soil properties, and conducted a 4-year litter bag study with big-toothed aspen leaves (Populus grandidentata). Invertebrate community responses followed a habitat accommodation model of succession showing that invertebrate succession is dependent on the soil surface properties. The fall and spring measures revealed that the densities of active invertebrates were highest 101 years after fire. For a given pair of stands, a pattern of sharing higher percentage of taxa was denoted when stands were of similar age. Some species such as the beetle Stelidota octomaculata appeared to be indicator of the chronosequence succession stage because it tracks the successional increase of Quercus and acorn production at the study site. We also found a significant positive correlation between leaf decomposition of soil macrofaunal accessible leaves and millipedes density across the chronosequence. We show that vegetation cover changes and related shifts in habitat structure occurring during post-fire succession are important in shaping communities assemblages. This finding highlights the importance of simultaneously considering abiotic-biotic factors together with above- and belowground measurements to better characterize controls on successional community dynamics after disturbance.

3.
Ecology ; 94(12): 2827-37, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24597228

ABSTRACT

Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.


Subject(s)
Carbon/chemistry , Introduced Species , Oligochaeta/classification , Oligochaeta/physiology , Soil/chemistry , Trees , Animals , Carbon/metabolism , Ecosystem , Silicon Dioxide , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...