Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Nature ; 605(7911): 653-658, 2022 05.
Article in English | MEDLINE | ID: mdl-35364602

ABSTRACT

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2-4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s-1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.

3.
Science ; 374(6568): 711-717, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34618548

ABSTRACT

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing. The fan has outcrop faces, which were invisible from orbit, that record the hydrological evolution of Jezero crater. We interpret the presence of inclined strata in these outcrops as evidence of deltas that advanced into a lake. In contrast, the uppermost fan strata are composed of boulder conglomerates, which imply deposition by episodic high-energy floods. This sedimentary succession indicates a transition from sustained hydrologic activity in a persistent lake environment to highly energetic short-duration fluvial flows.

4.
Science ; 349(6247): aab0671, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228154

ABSTRACT

The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material.

5.
Geophys Res Lett ; 42(10): 3746-3754, 2015 May 28.
Article in English | MEDLINE | ID: mdl-27656006

ABSTRACT

We examined the spectral properties of a selection of Titan's impact craters that represent a range of degradation states. The most degraded craters have rims and ejecta blankets with spectral characteristics that suggest that they are more enriched in water ice than the rims and ejecta blankets of the freshest craters on Titan. The progression is consistent with the chemical weathering of Titan's surface. We propose an evolutionary sequence such that Titan's craters expose an intimate mixture of water ice and organic materials, and chemical weathering by methane rainfall removes the soluble organic materials, leaving the insoluble organics and water ice behind. These observations support the idea that fluvial processes are active in Titan's equatorial regions.

6.
Science ; 343(6169): 1244734, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24324274

ABSTRACT

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Subject(s)
Exobiology , Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Mars , Bays , Calcium Sulfate/analysis , Calcium Sulfate/chemistry , Chlorine/analysis , Chlorine/chemistry , Ferrosoferric Oxide/analysis , Ferrosoferric Oxide/chemistry , Halogens/analysis , Halogens/chemistry , Hydrogen-Ion Concentration , Iron/analysis , Iron/chemistry , Magnesium/analysis , Magnesium/chemistry , Silicates/analysis , Silicates/chemistry , Water/chemistry
7.
Science ; 341(6153): 1238670, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24072924

ABSTRACT

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.

8.
Science ; 340(6136): 1068-72, 2013 May 31.
Article in English | MEDLINE | ID: mdl-23723230

ABSTRACT

Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

9.
Philos Trans A Math Phys Eng Sci ; 367(1889): 617-31, 2009 Feb 28.
Article in English | MEDLINE | ID: mdl-19073458

ABSTRACT

Measurements of the carbon and nitrogen isotopic ratios as well as the detection of 40Ar and 36Ar by the gas chromatograph mass spectrometer (GCMS) instrument on board the Huygens probe have provided key constraints on the origin and evolution of Titan's atmosphere, and indirectly on the evolution of its interior. Those data combined with models of Titan's interior can be used to determine the story of volatile outgassing since Titan's formation. In the absence of an internal source, methane, which is irreversibly photodissociated in Titan's stratosphere, should be removed entirely from the atmosphere in a time-span of a few tens of millions of years. The episodic destabilization of methane clathrate reservoir stored within Titan's crust and subsequent methane outgassing could explain the present atmospheric abundance of methane, as well as the presence of argon in the atmosphere. The idea that methane is released from the interior through eruptive processes is also supported by the observations of several cryovolcanic-like features on Titan's surface by the mapping spectrometer (VIMS) and the radar on board Cassini. Thermal instabilities within the icy crust, possibly favoured by the presence of ammonia, may explain the observed features and provide the conditions for eruption of methane and other volatiles. Episodic resurfacing events associated with thermal and compositional instabilities in the icy crust can have major consequences on the hydrocarbon budget on Titan's surface and atmosphere.

10.
Science ; 317(5842): 1206-10, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17673623

ABSTRACT

The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system.


Subject(s)
Ferric Compounds , Mars , Water , Extraterrestrial Environment
SELECTION OF CITATIONS
SEARCH DETAIL
...