Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(1): 207-218, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38116932

ABSTRACT

Pearl farming is crucial for the economy of French Polynesia. However, rearing structures contribute significantly to plastic waste, and the widespread contamination of pearl farming lagoons by microplastics has raised concerns about risks to the pearl industry. This study aimed to evaluate the effects of micro-nanoplastics (MNPs, 0.4-200 µm) on the pearl oyster (Pinctada margaritifera) over a 5-month pearl production cycle by closely mimicking ecological scenarios. MNPs were produced from weathered plastic pearl farming gear and tested at environmentally relevant concentrations (0.025 and 1 µg L-1) to decipher biological and functional responses through integrative approaches. The significant findings highlighted the impacts of MNPs on oyster physiology and pearl quality, even at remarkably low concentrations. Exposure to MNPs induced changes in energy metabolism, predominantly driven by reduced assimilation efficiency of microalgae, leading to an alteration in gene expression patterns. A distinct gene expression module exhibited a strong correlation with physiological parameters affected by MNP conditions, identifying key genes as potential environmental indicators of nutritional-MNP stress in cultured oysters. The alteration in pearl biomineralization, evidenced by thinner aragonite crystals and the presence of abnormal biomineral concretions, known as keshi pearls, raises concerns about the potential long-term impact on the Polynesian pearl industry.


Subject(s)
Ostreidae , Pinctada , Animals , Microplastics , Plastics , Agriculture , Farms , Pinctada/metabolism
2.
Proc Natl Acad Sci U S A ; 119(45): e2212616119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322756

ABSTRACT

Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.


Subject(s)
Pinctada , Animals , Calcium Carbonate/chemistry , Mollusca , X-Rays
3.
Environ Pollut ; 315: 120383, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36223856

ABSTRACT

The impact of microplastics (MP) has attracted much attention from the scientific community and many laboratory assessments have been made of their effects on aquatic organisms. To produce MP from real environmental plastic waste, which would enable more realistic experiments, we used plastic pearl farming equipment from French Polynesian lagoons. Here, the pearl oyster Pinctada margaritifera could encounter MP coming from their breakdown in its surrounding environment. We tested an established method based on mechanical cryogenic grinding and liquid sieving. Our desired size range was 20-60 µm, corresponding to the optimal particle size ingested by P. margaritifera. The protocol was effective, generating MP particles of 20-60 µm (∼17,000-28,000 MP µg-1), but also produced too many smaller particles. The peak in the desired size range was thus flattened by the many small particles <3 µm (∼82,000-333,000 MP µg-1; 53-70% of total analysed particles), visible at the limit of Coulter counter analysis (cut-off point: 2 µm). Laser diffraction analysis (cut-off point: 0.4 µm) provided greater detail, showing that ∼80-90% of the total analysed particles were <1 µm. Diverging particle size distributions between those expected based on sieving range and those really observed, highlight the need to perform fine-scaled particle size distribution analyses to avoid underestimating the number of small micro- and nanoplastics (MNP) and to obtain an exact estimation of the fractions produced. Size and microstructure characterization by scanning electron microscopy suggested spontaneous particle self-assembly into crystal superstructures, which is the supposed cause of the divergence we observed. Overall, our results emphasize that particle self-assembly is a technical hurdle requiring further work and highlight the specific need to finely characterize the size distribution of MNP used in ecotoxicological experiments to avoid overestimating effects.


Subject(s)
Pinctada , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Ecotoxicology , Particle Size , Aquatic Organisms , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring
4.
J Struct Biol ; 214(4): 107909, 2022 12.
Article in English | MEDLINE | ID: mdl-36309120

ABSTRACT

In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the ν1 calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals.


Subject(s)
Carbonates , Microscopy , Reproducibility of Results , Calcium Carbonate
5.
Mar Pollut Bull ; 183: 114099, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36088687

ABSTRACT

The pearl-farming industry depends mostly on the natural recruitment of pearl oysters. Little is known about the relative influence of different ecological processes on the natural recruitment of pearl oysters across biogeographical scales. Spatio-temporal dynamics of bivalve larvae and spats were described at Ahe and Mangareva, 1500 km apart across French Polynesia. We quantified the effect of candidate environmental predictors on the dynamics of larvae. Both lagoons showed similar temporal dynamics with twice more larvae and 6 times more spat in Ahe. Pinctada maculata spat were more abundant than for P. margaritifera at both lagoons. While the temporal dynamics in larvae abundance were best explained by a positive effect of temperature in Ahe, the dynamics in Mangareva were poorly predicted by the environmental variables, meaning bivalve early-life stages perform better in Ahe than Mangareva suggesting a mismatch between the relevant environmental forces driving larval dynamics at these two contrasting lagoons.


Subject(s)
Aquaculture , Pinctada , Agriculture , Animals , Larva , Polynesia , Temperature
6.
J Anim Ecol ; 91(6): 1196-1208, 2022 06.
Article in English | MEDLINE | ID: mdl-35435257

ABSTRACT

Ocean warming challenges marine organisms' resilience, especially for species experiencing temperatures close to their upper thermal limits. A potential increase in thermal tolerance might significantly reduce the risk of population decline, which is intrinsically linked to variability in local habitat temperatures. Our goal was to assess the plastic and genetic potential of response to elevated temperatures in a tropical bivalve model, Pinctada margaritifera. We benefit from two ecotypes for which local environmental conditions are characterized by either large diurnal variations in the tide pools (Marquesas archipelago) or low mean temperature with stable to moderate seasonal variations (Gambier archipelago). We explored the physiological basis of individual responses to elevated temperature, genetic divergence as well as plasticity and acclimation by combining lipidomic and transcriptomic approaches. We show that P. margaritifera has certain capacities to adjust to long-term elevated temperatures that was thus far largely underestimated. Genetic variation across populations overlaps with gene expression and involves the mitochondrial respiration machinery, a central physiological process that contributes to species thermal sensitivity and their distribution ranges. Our results present evidence for acclimation potential in P. margaritifera and urge for longer term studies to assess populations resilience in the face of climate change.


Le réchauffement des océans remet en question la résilience des organismes marins, en particulier pour les espèces connaissant des températures proches de leurs limites thermiques supérieures. Une augmentation potentielle de la tolérance thermique pourrait ainsi réduire considérablement le risque de déclin de la population. L'objectif de cette étude était d'évaluer le potentiel plastique et génétique de la réponse à l'exposition courte et chronique à températures élevées chez une espèce de bivalve tropical, Pinctada margaritifera. Ce modèle bénéficie de l'existence de deux écotypes pour lesquels les conditions environnementales locales sont caractérisées soit par de fortes variations diurnes associées aux marées (archipel des Marquises) soit par une température moyenne plus basse et des variations saisonnières prononcées (archipel des Gambier). Nous avons exploré les bases physiologiques des réponses individuelles ainsi que la divergence génétique et quantifié la plasticité en combinant des approches lipidomique et transcriptomique. Nous montrons que P. margaritifera possède des capacités d'acclimatation à des températures élevées sur le long terme jusqu'à présent largement sous-estimées. La divergence génétique entre populations est par ailleurs associée à des différences d'expression des gènes et implique la machinerie respiratoire mitochondriale, un processus physiologique central qui contribue à la sensibilité thermique des espèces et à leurs répartitions. Nos résultats présentent les bases des potentiels d'acclimatation chez P. margaritifera et soulignent l'importance d'études à plus long terme pour évaluer la résilience des populations face au changement climatique.


Subject(s)
Bivalvia , Fatty Acids , Acclimatization/physiology , Animals , Bivalvia/genetics , Climate Change , Gene Expression , Genetic Variation , Temperature
7.
J Hazard Mater ; 419: 126396, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34171671

ABSTRACT

Pearl-farming is the second most important source of income in French Polynesia. However, tropical lagoons are fragile ecosystems with regard to anthropogenic pressures like plastic pollution, which threaten marine life and the pearl oyster-related economy. Here, we investigated the spatial distribution of microplastics (MP) and concentrations in surface water (SW), water column (WC) and cultivated pearl oyster (PO) from three pearl-farming atolls with low population and tourism. Microplastics were categorized by their size class, shape, colour and polymer type identified using FTIR spectroscopy. Widespread MP contamination was observed in every study site (SW, 0.2-8.4 MP m-3; WC, 14.0-716.2 MP m-3; PO, 2.1-125.0 MP g-1 dry weight), with high contamination in the WC highlighting the need to study the vertical distribution of MP, especially as this compartment where PO are reared. A large presence of small (< 200 µm) and fragment-shaped (> 70%) MP suggests that they result from the breakdown of larger plastic debris. The most abundant polymer type was polyethylene in SW (34-39%), WC (24-32%), while in PO, polypropylene (14-20%) and polyethylene were more evenly distributed (9-21%). The most common MP identified as black-grey polyethylene and polypropylene matches the polymer and colour of ropes and collectors questioning a pearl-farming origin.


Subject(s)
Pinctada , Water Pollutants, Chemical , Agriculture , Animals , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
8.
Conserv Physiol ; 9(1): coab041, 2021.
Article in English | MEDLINE | ID: mdl-34150209

ABSTRACT

Many reef organisms, such as the giant clams, are confronted with global change effects. Abnormally high seawater temperatures can lead to mass bleaching events and subsequent mortality, while ocean acidification may impact biomineralization processes. Despite its strong ecological and socio-economic importance, its responses to these threats still need to be explored. We investigated physiological responses of 4-year-old Tridacna maxima to realistic levels of temperature (+1.5°C) and partial pressure of carbon dioxide (pCO2) (+800 µatm of CO2) predicted for 2100 in French Polynesian lagoons during the warmer season. During a 65-day crossed-factorial experiment, individuals were exposed to two temperatures (29.2°C, 30.7°C) and two pCO2 (430 µatm, 1212 µatm) conditions. The impact of each environmental parameter and their potential synergetic effect were evaluated based on respiration, biomineralization and photophysiology. Kinetics of thermal and/or acidification stress were evaluated by performing measurements at different times of exposure (29, 41, 53, 65 days). At 30.7°C, the holobiont O2 production, symbiont photosynthetic yield and density were negatively impacted. High pCO2 had a significant negative effect on shell growth rate, symbiont photosynthetic yield and density. No significant differences of the shell microstructure were observed between control and experimental conditions in the first 29 days; however, modifications (i.e. less-cohesive lamellae) appeared from 41 days in all temperature and pCO2 conditions. No significant synergetic effect was found. Present thermal conditions (29.2°C) appeared to be sufficiently stressful to induce a host acclimatization response. All these observations indicate that temperature and pCO2 are both forcing variables affecting T. maxima's physiology and jeopardize its survival under environmental conditions predicted for the end of this century.

9.
Mar Pollut Bull ; 167: 112329, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33862381

ABSTRACT

Mass-mortality events of marine species can disturb the structure of communities. While identifying the causes of mass-mortality events is crucial for implementing recovery strategies, monitoring is challenging in remote locations. Black-lip pearl oysters (Pinctada margaritifera) are farmed for producing black pearls within remote atolls of French Polynesia. Previous mass-mortality events have resulted in the collapse of oysters and other species; however, the causes and conditions that favour recovery are unclear. We investigated the potential for oyster population recovery 5 years after a mortality event at Takaroa Atoll (Tuamotu Archipelago). Temperature, food availability (total chlorophyll-a), growth and reproduction were monitored. Growth was also simulated using a Dynamic Energy Budget model. Despite favourable conditions, reduced growth and reproduction signalled an energetic deficit. The model overpredicted growth, and supported the hypotheses that individuals are unable to profit from the phytoplankton available and maintenance costs are high in Takaroa, ultimately explaining their poor physiological condition.


Subject(s)
Pinctada , Animals , Aquaculture , Humans , Phytoplankton , Polynesia , Stress, Physiological
10.
Environ Pollut ; 266(Pt 3): 115180, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32673975

ABSTRACT

A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 µm) at 0.25, 2.5, and 25 µg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.


Subject(s)
Pinctada , Animals , Energy Metabolism , Microplastics , Plastics , Transcriptome
11.
Water Res ; 179: 115890, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32402865

ABSTRACT

Pearl-farming leads to significant plastic pollution in French Polynesia (FP) as the end of life of most farming gear is currently poorly managed. Plastic debris released into the aquatic environment accumulates, with potentially detrimental effects on the lagoon ecosystem and pearl oyster Pinctada margaritifera, a species of ecological, commercial and social value. Here, we tested the effects of leachates from new (N) and aged (A) plastic pearl-farming gear (spat collector and synthetic rope) obtained after 24 h and 120 h incubation, on the embryo-larval development of the pearl oyster using an in-vitro assay. Embryos were exposed for 24 h and 48 h to a negative control (0) and the leachate from 0.1, 1, 10 and 100 g of plastic. L-1. After 24 h exposure to leachate at 100 g.L-1, effects were observed on embryo development (-38% to -60% of formed larvae) and mortality (+72% to +82%). Chemical analyses of plastic gear indicated the presence of 26 compounds, consisting of organic contaminants (PAHs) and additives (mainly phthalates). Screening of leachates demonstrated that these compounds leach into the surrounding seawater with an additional detection of pesticides. Higher levels of phthalates were measured in leachates obtained from new (6.7-9.1 µg.L-1) than from aged (0.4-0.5 µg.L-1) plastics, which could be part of the explanation of the clear difference in toxicity observed after 48 h exposure at lower concentrations (0.1-10 g.L-1), associated with mortality ranging from 26 to 86% and 17-28%, respectively. Overall, this study suggests that plastic gear used in the pearl-farming industry releases significant amounts of hazardous chemicals over their lifetime, which may affect pearl oyster development that call for in-situ exploration.


Subject(s)
Pinctada , Agriculture , Animals , Ecosystem , Plastics , Polynesia
12.
J Exp Biol ; 221(Pt 18)2018 09 21.
Article in English | MEDLINE | ID: mdl-30072384

ABSTRACT

The objective of this study was to observe the impact of temperature on pearl formation using an integrative approach describing the rotation of the pearls, the rate of nacre deposition, the thickness of the aragonite tablets and the biomineralizing potential of the pearl sac tissue though the expression level of some key genes. Fifty pearl oysters were grafted with magnetized nuclei to allow the rotation of the pearls to be described. Four months later, 32 of these pearl oysters were exposed to four temperatures (22, 26, 30 and 34°C) for 2 weeks. Results showed that the rotation speed differed according to the movement direction: pearls with axial movement had a significantly higher rotation speed than those with random movement. Pearl growth rate was influenced by temperature, with a maximum between 26 and 30°C but almost no growth at 34°C. Lastly, among the nine genes implicated in the biomineralization process, only Pmarg-Pif177 expression was significantly modified by temperature. These results showed that the rotation speed of the pearls was not linked to pearl growth or to the expression profiles of biomineralizing genes targeted in this study. On the basis of our results, we consider that pearl rotation is a more complex process than formerly thought. Mechanisms involved could include a strong environmental forcing in immediate proximity to the pearl. Another implication of our findings is that, in the context of ocean warming, pearl growth and quality can be expected to decrease in pearl oysters exposed to temperatures above 30°C.


Subject(s)
Biomineralization , Nacre/physiology , Pinctada/physiology , Animals , Calcification, Physiologic , Pinctada/genetics , Rotation , Temperature
13.
Sci Rep ; 8(1): 7520, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29760480

ABSTRACT

The pearl oyster is one of the rare animal models that support two distinct genomes, through the surgical graft process operated for culture pearl production. This grafted organism is assimilated to a chimera whose physiological functioning remains poorly known. The question of the energy expenditure comparison between chimera and non-chimera animals arises. To answer this question, grafted and non-grafted pearl oysters were evaluated for their energetic needs by the indirect calorimetry method. This method made it possible to measure the energy expenditure based on the respiration rate (RR) measurement, reflecting the basal metabolism. The results showed that the RR values for grafted and non-grafted pearl oysters were not significantly different (p < 0.05). The estimated cost of pearl calcification including CaCO3 and proteins synthesis was 0.237 ± 0.064 J h-1, representing 0.64% of the total energy expenditure of grafted pearl oysters. This study made it possible, for the first time, to see the energy cost of cultured pearl formation in P. margaritifera and the little impact in the energetic metabolism of the chimera organism.


Subject(s)
Chimera/metabolism , Nacre/metabolism , Pinctada/genetics , Animals , Aquaculture , Basal Metabolism , Calcification, Physiologic , Calorimetry , Energy Metabolism , Pinctada/metabolism , Transplantation
14.
Environ Sci Technol ; 52(9): 5277-5286, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29620881

ABSTRACT

Plastic pollution in the environment is increasing at global scale. Microplastics (MP) are derived from degradation of larger plastic items or directly produced in microparticles form (< 5 mm). Plastics, widely used in structures and equipment of pearl farming, are a source of pollution to the detriment of the lagoon ecosystem. To evaluate the impact of MP on the physiology of Pinctada margaritifera, a species of ecological and commercial interests, adult oysters were exposed to polystyrene microbeads (micro-PS of 6 and 10 µm) for 2 months. Three concentrations, 0.25, 2.5, and 25 µg L-1, and a control were tested. Ingestion and respiration rate and assimilation efficiency were monitored on a metabolic measurement system to determine the individual energy balance (Scope For Growth, SFG). Effects on reproduction were also assessed. The assimilation efficiency decreased significantly according to micro-PS concentration. The SFG was significantly impacted by a dose-dependent decrease from 0.25 µg L-1 ( p < 0.0001), and a negative SFG was measured in oysters exposed to 25 µg L-1. Gonads may have provided the missing energy to maintain animals' metabolism through the production of metabolites derived from germ cells phagocytosis. This study shows that micro-PS significantly impact the assimilation efficiency and more broadly the energy balance of P. margaritifera, with negative repercussions on reproduction.


Subject(s)
Ostreidae , Pinctada , Animals , Ecosystem , Gametogenesis , Plastics
15.
PLoS One ; 13(3): e0193863, 2018.
Article in English | MEDLINE | ID: mdl-29505601

ABSTRACT

Environmental parameters, such as food level and water temperature, have been shown to be major factors influencing pearl oyster shell growth and molecular mechanisms involved in this biomineralization process. The present study investigates the effect of food level (i.e., microalgal concentration) and water temperature, in laboratory controlled conditions, on the last stages of pearl mineralization in order to assess their impact on pearl quality. To this end, grafted pearl oysters were fed at different levels of food and subjected to different water temperatures one month prior to harvest to evaluate the effect of these factors on 1) pearl and shell deposition rate, 2) expression of genes involved in biomineralization in pearl sacs, 3) nacre ultrastructure (tablet thickness and number of tablets deposited per day) and 4) pearl quality traits. Our results revealed that high water temperature stimulates both shell and pearl deposition rates. However, low water temperature led to thinner nacre tablets, a lower number of tablets deposited per day and impacted pearl quality with better luster and fewer defects. Conversely, the two tested food level had no significant effects on shell and pearl growth, pearl nacre ultrastructure or pearl quality. However, one gene, Aspein, was significantly downregulated in high food levels. These results will be helpful for the pearl industry. A wise strategy to increase pearl quality would be to rear pearl oysters at a high water temperature to increase pearl growth and consequently pearl size; and to harvest pearls after a period of low water temperature to enhance luster and to reduce the number of defects.


Subject(s)
Animal Shells/physiology , Pinctada/physiology , Animal Shells/metabolism , Animals , Color , Down-Regulation/physiology , Food , Nacre/metabolism , Pinctada/metabolism , Temperature , Water/chemistry
16.
PLoS One ; 12(1): e0170565, 2017.
Article in English | MEDLINE | ID: mdl-28118406

ABSTRACT

Shell growth, reproduction, and natural mortality of the giant clam Tridacna maxima were characterized over a two-year-period in the lagoon of the high island of Tubuai (Austral Archipelago) and in the semi-closed lagoon of Tatakoto (Tuamotu Archipelago) in French Polynesia. We also recorded temperature, water level, tidal slope, tidal range, and mean wave height in both lagoons. Lower lagoon aperture and exposure to oceanic swells at Tatakoto than at Tubuai was responsible for lower lagoon water renewal, as well as higher variability in temperature and water level at Tatakoto across the studied period. These different environmental conditions had an impact on giant clams. Firstly, spawning events in the lagoon of Tatakoto, detected by gonad maturity indices in June and July 2014, were timed with high oceanic water inflow and a decrease in lagoon water temperature. Secondly, temperature explained differences in shell growth rates between seasons and lagoons, generating different growth curves for the two sites. Thirdly, local mortality rates were also found to likely be related to water renewal patterns. In conclusion, our study suggests that reef aperture and lagoon water renewal rates play an integral role in giant clam life history, with significant differences in rates of shell growth, mortality and fertility found between open versus semi-closed atoll lagoons in coral reef ecosystems.


Subject(s)
Bivalvia/physiology , Ecosystem , Animal Shells/growth & development , Animals , Bivalvia/growth & development , Coral Reefs , Female , Fertility , Male , Polynesia , Reproduction , Seasons , Seawater , Survival Analysis , Temperature , Water Movements , Wind
17.
J Exp Zool A Ecol Genet Physiol ; 325(1): 13-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26482470

ABSTRACT

The black-lip pearl oyster Pinctada margaritifera is a protandrous hermaphrodite species. Its economic value has led to the development of controlled hatchery reproduction techniques, although many aspects remain to be optimized. In order to understand reproductive mechanisms and their controlling factors, two independent experiments were designed to test hypotheses of gametogenesis and sex ratio control by environmental and hormonal factors. In one, pearl oysters were exposed under controlled conditions at different combinations of temperature (24 and 28°C) and food level (10,000 and 40,000 cells mL(-1) ); whereas in the other, pearl oysters were conditioned under natural conditions into the lagoon and subjected to successive 17ß-estradiol injections (100 µg per injection). Gametogenesis and sex ratio were assessed by histology for each treatment. In parallel, mRNA expressions of nine marker genes of the sexual pathway (pmarg-foxl2, pmarg-c43476, pmarg-c45042, pmarg-c19309, pmarg-c54338, pmarg-vit6, pmarg-zglp1, pmarg-dmrt, and pmarg-fem1-like) were investigated. Maximum maturation was observed in the treatment combining the highest temperature (28°C) and the highest microalgae concentration (40,000 cells mL(-1) ), where the female sex tended to be maintained. Injection of 17ß-estradiol induced a significant increase of undetermined stage proportion 2 weeks after the final injection. These results suggest that gametogenesis and gender in adult pearl oysters can be controlled by environmental factors and estrogens. While there were no significant effects on relative gene expression, the 3-gene-pair expression ratio model of the sexual pathway of P. margaritifera, suggest a probable dominance of genetic sex determinism without excluding a mixed sex determination mode (genetic + environmental). J. Exp. Zool. 325A:13-24, 2016. © 2015 Wiley Periodicals, Inc.


Subject(s)
Gametogenesis/physiology , Pinctada/physiology , Sex Determination Processes/genetics , Sex Ratio , Animals , Estradiol/pharmacology , Female , Food , Gametogenesis/genetics , Gene Expression Regulation, Developmental , Male , Pinctada/genetics , RNA, Messenger/biosynthesis , Temperature
18.
R Soc Open Sci ; 2(7): 150144, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26587271

ABSTRACT

Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min(-1) calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets.

19.
PLoS One ; 10(3): e0122819, 2015.
Article in English | MEDLINE | ID: mdl-25815473

ABSTRACT

The genomics of economically important marine bivalves is studied to provide better understanding of the molecular mechanisms underlying their different reproductive strategies. The recently available gonad transcriptome of the black-lip pearl oyster Pinctada margaritifera is a novel and powerful resource to study these mechanisms in marine mollusks displaying hermaphroditic features. In this study, RNAseq quantification data of the P. margaritifera gonad transcriptome were analyzed to identify candidate genes in histologically-characterized gonad samples to provide molecular signatures of the female and male sexual pathway in this pearl oyster. Based on the RNAseq data set, stringent expression analysis identified 1,937 contigs that were differentially expressed between the gonad histological categories. From the hierarchical clustering analysis, a new reproduction model is proposed, based on a dual histo-molecular analytical approach. Nine candidate genes were identified as markers of the sexual pathway: 7 for the female pathway and 2 for the male one. Their mRNA levels were assayed by real-time PCR on a new set of gonadic samples. A clustering method revealed four principal expression patterns based on the relative gene expression ratio. A multivariate regression tree realized on these new samples and validated on the previously analyzed RNAseq samples showed that the sexual pathway of P. margaritifera can be predicted by a 3-gene-pair expression ratio model of 4 different genes: pmarg-43476, pmarg-foxl2, pmarg-54338 and pmarg-fem1-like. This 3-gene-pair expression ratio model strongly suggests only the implication of pmarg-foxl2 and pmarg-fem1-like in the sex inversion of P. margaritifera. This work provides the first histo-molecular model of P. margaritifera reproduction and a gene expression signature of its sexual pathway discriminating the male and female pathways. These represent useful tools for understanding and studying sex inversion, sex differentiation and sex determinism in this species and other related species for aquaculture purposes such as genetic selection programs.


Subject(s)
Disorders of Sex Development/genetics , Pinctada/genetics , Sex Determination Processes , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Gonads/growth & development , Gonads/metabolism , Male , Pinctada/physiology
20.
PLoS One ; 9(8): e103944, 2014.
Article in English | MEDLINE | ID: mdl-25121605

ABSTRACT

In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.


Subject(s)
Animal Shells/growth & development , Animal Shells/physiology , Gene Expression/genetics , Pinctada/growth & development , Pinctada/genetics , Proteins/genetics , Animals , Food , Nacre/genetics , Nacre/physiology , Physiological Phenomena/genetics , Physiological Phenomena/physiology , Pinctada/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...