Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(9): 5188-5197, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32090224

ABSTRACT

Concentrated nitric acid solutions subjected to radiation produce radicals of extreme importance in the reprocessing of spent nuclear fuel. Knowledge of the different rate constants of the reactions involved in this chemistry is needed to improve the efficiency of the process and to define safe operating practices. Pulse radiolysis measurements are performed to find the rate constant of the reaction between NO3˙ radicals and U(iv) in highly concentrated nitrate solution. The optimal stabilization conditions toward thermal oxidation are defined for the considered solutions at room temperature and at 45 °C by adding anti-nitrous agents such as hydrazinium nitrate (HN) and hydroxyl ammonium nitrate (HAN). The decay of the NO3˙ radical is monitored and its reaction rates with HN, HAN and U(iv) are found to be 1.3 × 105, 1.5 × 107 and 1.6 × 106 M-1 s-1 at room temperature. The latter value is more than 10 times lower than the one currently used in numerical codes for simulation of the long-term radiolytic degradation associated with the reprocessing and storage of spent nuclear waste. At 45 °C, conditions similar to the reprocessing of spent fuel, the values of the rate constants of NO3˙ radical toward HN, HAN and U(iv) increase and are found to be 2.6 × 105, 2.9 × 107 and 9.3 × 106 M-1 s-1.

2.
J Phys Chem A ; 114(5): 2080-5, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-20078049

ABSTRACT

The yields of the radiolytic oxidation of U(IV) and of the U(VI) formation, measured by spectrophotometry, are found to be the same (G(-U(IV))(N2O) = G(U(VI))(N2O) = 8.4 x 10(-7) mol J(-1)) and almost double the H(2) formation yield (G(H(2)) = 4.4 x 10(-7) mol J(-1)) in the (60)Co gamma radiolysis of N(2)O-aqueous solutions in the presence of 2 mol L(-1) Cl(-) at pH = 0 (HCl). According to the mechanism of U(IV) radiolytic oxidation, we show that under the conditions of our experiments the U(V) ions do not disproportionate, but undergo a stoichiometric oxidation into U(VI) by H(+) with forming H(2).

3.
Ultrason Sonochem ; 14(3): 330-6, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16996294

ABSTRACT

Laboratory scale 20 kHz sonochemical reactors with different geometries have been tested using thermal probes, the kinetics of H(2)O(2) formation, and the kinetics of diphenylmethane (DPhM) sonochemical darkening. Results revealed that the overall sonochemical reaction rates in H(2)O and DPhM are driven by the total absorbed acoustic energy and roughly independent the geometry of the studied reactors. However, the sonochemical efficiency, defined as eta=VG/S, where G is a sonochemical yield of H(2)O(2), V is a volume of sonicated liquid, and S is a surface of the sonotrode, was proved to increase with the decrease of S. This phenomenon was explained by growing of the maximum cavitating bubble size with ultrasonic intensity and its independence towards the specific absorbed acoustic power. For the cleaning bath reactor the kinetics of the sonochemical reactions in H(2)O and DPhM depends strongly on the reaction vessel materials: the reaction rates decreased with the increase of the materials elasticity. Kinetic study of H(2)SO(4) sonolysis using a sonoreactor without direct contact with titanium sonotrode showed that sulphate anion is an effective scavenger of OH() radicals formed during water sonolysis.

4.
Inorg Chem ; 45(26): 10419-21, 2006 Dec 25.
Article in English | MEDLINE | ID: mdl-17173389

ABSTRACT

The tetrachlorouranium(VI) complex is formed in [Bmim][Tf2N] and [MeBu3N][Tf2N] from a uranium(VI) solution in the presence of a stoichiometric quantity of chloride ions. The [UVIO2Cl4]2- absorption and emission spectra show bands splitting in comparison with the [UVIO2]2+ spectra, as observed in the solid state, organic solvents, and chloroaluminate-based ionic liquids. The fluorescence lifetime of [UO2Cl4]2- in [MeBu3N][Tf2N] is 0.7 +/- 0.1 mus. The reduction potential of this complex is -1.44 and -1.8 V vs Ag/Ag+ respectively in [Bmim][Tf2N] and [MeBu3N][Tf2N] and does not depend on the chloride concentration. The mechanism proposed for the redox process is a monoelectronic reduction to form [UVO2Cl4]3-, followed by a chemical reaction. The tetrachlorouranium(V) complex seems more stable in [Bmim][Tf2N] than in [MeBu3N][Tf2N]. The electrochemical analysis put in evidence specific interactions of the ionic liquid cation with the uranium anionic species.

5.
Inorg Chem ; 44(25): 9497-505, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-16323937

ABSTRACT

The behavior of U(IV) octahedral complexes [cation]2[UCl6], where the [cation]+ is [BuMeIm]+ and [MeBu3N]+, is studied using UV/visible spectroscopy, cyclic staircase voltammetry, and rotating disk electrode voltammetry in hydrophobic room-temperature ionic liquids (RTILs) [BuMeIm][Tf2N] and [MeBu3N][Tf2N], where BuMeIm+ and MeBu3N+ are 1-butyl-3-methylimidazolium and tri-n-butylmethylammonium cations, respectively, and Tf2N- is the bis(trifluoromethylsulfonyl)imide anion. The absorption spectra of [cation]2[UCl6] complexes in the RTIL solutions are similar to the diffuse solid-state reflectance spectra of the corresponding solid species, indicating that the octahedral complex UCl6(2-) is the predominant chemical form of U(IV) in Tf2N--based hydrophobic ionic liquids. Hexachloro complexes of U(IV) are stable to hydrolysis in the studied RTILs. Voltammograms of UCl(6)2- at the glassy carbon electrode in both RTILs and at the potential range of -2.5 to +1.0 V versus Ag/Ag(I) reveal the following electrochemical couples: UCl6-/UCl6(2-) (quasi-reversible system), UCl(6)2-/UCl6(3-) (quasi-reversible system), and UCl(6)2-/UCl6(Tf2N)x-3+x (irreversible reduction). The voltammetric half-wave potential, Ep/2, of the U(V)/U(IV) couple in [BuMeIm][Tf2N] is positively shifted by 80 mV compared with that in [MeBu3N][Tf2N]. The positive shift in the Ep/2 value for the quasi-reversible U(IV)/U(III) couple is much greater (250 mV) in [BuMeIm][Tf2N]. Presumably, the potential shift is due to the specific interaction of BuMeIm+ with the uranium-hexachloro complex in ionic liquid. Scanning the negative potential to -3.5 V in [MeBu3N][Tf2N] solutions of UCl6(2-) reveals the presence of an irreversible cathodic process at the peak potential equal to -3.12 V (at 100 mV/s and 60 degrees C), which could be attributed to the reduction of U(III) to U(0).

6.
Phys Rev Lett ; 86(18): 3985-8, 2001 Apr 30.
Article in English | MEDLINE | ID: mdl-11328076

ABSTRACT

We have measured the cross section of the 7Be(p,gamma)8B reaction for E(c.m.) = 185.8, 134.7, and 111.7 keV using a radioactive 7Be target (132 mCi). Single and coincidence spectra of beta+ and alpha particles from 8B and 8Be* decay, respectively, were measured using a large acceptance spectrometer. The zero energy S factor inferred from these data is 18.5+/-2.4 eV b and a weighted mean value of 18.8+/-1.7 eV b (theoretical uncertainty included) is deduced when combining this value with our previous results at higher energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...