Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2421: 141-150, 2022.
Article in English | MEDLINE | ID: mdl-34870817

ABSTRACT

The scavenger receptor cysteine-rich SRCR domain is an ancient protein domain found in SR-A and SR-I scavenger receptors, which is characterized by a conserved arrangement of cysteines (Martinez et al., Pharmacol Rev 63(4):967-1000, 2011; Sarrias et al., Crit Rev Immunol 24(1):1-37, 2004; Telfer and Baldwin, Cell Immunol 296(1):76-86, 2015; PrabhuDas et al., J Immunol, 2017. 198(10):3775-3789). SRCR domains are divided into group A and group B SRCR domains by virtue of how many cysteines they contain and the resulting disulfide bonding pattern. Group B SRCR domains, found in WC1, CD163, CD5, CD6, Spα and DMBT1, are approximately 100-110 amino acids long and contain 6-8 cysteines predicted to form 3-4 disulfide bonds. The crystal structure of a CD5 group B SRCR domain predicts a fold of two beta-sheets and an alpha helix (Rodamilans et al., J Biol Chem 282(17):12669-12677, 2007; Wang et al., Mol Immunol 48:801-809, 2011). SRCR domains bind to many different types of chemical compounds found on cells, viruses, and microbes and are usually found in multiples in the extracellular domains of transmembrane proteins or in secreted proteins. Small amino acid differences between these SRCR domains lead to significant differences in binding affinity. In addition, SRCR domain genes contain allelic polymorphisms and can be extensively duplicated. Thus, single and duplicated SRCR domain protein gene loci encode a large tunable binding potential. Binding to pathogen-associated molecular patterns (PAMPs) combined with signaling potential predicts an important role for these molecules in the immune response. WC1 SRCR domains bind to the spirochetes Leptospira and Borrelia (Hsu et al., J Immunol 194(5):2280-2288, 2015). CD6 (Sarrias et al., Proc Natl Acad Sci U S A 104(28):11724-11729, 2007), Spα (Sarrias et al., J Biol Chem 280(42):35391-35398, 2005), CD163A (Fabriek et al., Blood 113(4):887-892, 2009) and DMBT1 (Madsen et al., Eur J Immunol 33(8):2327-2336, 2003) bind to Gram-positive and Gram-negative bacteria; CD5 binds to yeast (Vera et al., Proc Natl Acad Sci U S A 106(5):1506-1511, 2009). Identified ligands include lipoteichoic acid, lipopolysaccharide, poly-phosphorylated, and -sulfated compounds such as dextran sulfate sodium, leucine-rich repeat proteins, and fungal mannose (Sarrias et al., Proc Natl Acad Sci U S A 104(28):11724-11729, 2007; Sarrias et al., J Biol Chem 280(42):35391-35398, 2005; Fabriek et al., Blood 113(4):887-892, 2009; Vera et al., Proc Natl Acad Sci U S A 106(5):1506-1511, 2009; End et al., Eur J Immunol 39(3):833-842, 2009; Loimaranta et al., J Biol Chem 284(28):18614-18623, 2009). A conserved linear binding motif (VEVLXXXXW) in an external loop in the SRCR domain has been identified in CD163A and DMBT1 and can be used as a peptide that aggregates bacteria (Fabriek et al., Blood 113(4):887-892, 2009; Bikker et al., J Biol Chem 279(46):47699-47703, 2004; Leito et al., Biol Chem 389(9):1193-1200, 2008). In contrast, WC1 binding to bacteria is mediated by a noncontinuous motif in the native protein, and mutation of the VEVLXXXXW motif has no effect upon bacterial binding (Hsu et al., J Immunol 194(5):2280-2288, 2015). Thus, bacterial binding studies with WC1 SRCR domains must be done with native, correctly disulfide bonded, protein, ideally posttranslationally modified in mammalian cells.WC1 is found in the genomes of most mammals, reptiles, and birds and is expressed exclusively on γδ T cells in ruminants. The 13 bovine WC1 genes encode up to 11 extracellular SRCR domains, organized in the SRCR domain pattern of a1-[b2-c3-d4-e5-d6]-[b7-c8-d9-e10-d'11], where the alphabet designations indicate homology between genes and across species (Chen et al., BMC Genet 13:86, 2012; Herzig et al., BMC Evol Biol 10:181, 2010; Herzig and Baldwin, BMC Genomics 10:191, 2009). Some of the signaling co-receptor WC1 molecules are required for the γδ T cell response to Leptospira (Wang et al., Mol Immunol 48:801-809, 2011; Rogers et al., J Immunol 174(6):3386-3393, 2005; Wang et al., Eur J Immunol 39(1):254-266, 2009). The WC1 expressed on responsive γδ T cells is correlated with its direct binding to Leptospira via some of its SRCR domains (Hsu et al., J Immunol 194(5):2280-2288, 2015). Because WC1+ γδ T cells share a restriction in their γδ TCRs and WC1 has TCR co-receptor activity, we hypothesize that WC1 co-ligation with the TCR plays the determining role in the activation of WC1+ γδ T cells by pathogens. Classification of the binding of WC1 SRCR domains, their ligands, and their role in the interaction of 𝛾δ T cells with pathogens relevant to the host will allow these cells to be recruited in next-generation vaccines to pathogens that have significant negative economic and health impact.


Subject(s)
Protein Domains , Animals , Anti-Bacterial Agents , Bacteria , Cattle , Cysteine , Disulfides , Gram-Negative Bacteria , Gram-Positive Bacteria , Leptospira , Leucine-Rich Repeat Proteins , Ligands , Membrane Glycoproteins , Receptors, Antigen, T-Cell, gamma-delta , Receptors, Scavenger
2.
Dev Comp Immunol ; 128: 104334, 2022 03.
Article in English | MEDLINE | ID: mdl-34919982

ABSTRACT

Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αß T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.


Subject(s)
Communicable Diseases , Cytokines , Intraepithelial Lymphocytes , Receptors, Antigen, T-Cell, gamma-delta , Swine Diseases , Animals , Communicable Diseases/immunology , Communicable Diseases/veterinary , Cytokines/immunology , Intraepithelial Lymphocytes/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Pattern Recognition , Ruminants , Swine , Swine Diseases/immunology , Swine Diseases/microbiology
3.
Dev Comp Immunol ; 125: 104214, 2021 12.
Article in English | MEDLINE | ID: mdl-34329647

ABSTRACT

γδ T cells constitute a major portion of lymphocytes in the blood of both ruminants and swine. Subpopulations of swine γδ T cells have been distinguished by CD2 and CD8α expression. However, it was not clear if they have distinct expression profiles of their T-cell receptor (TCR) or WC1 genes. Identifying receptor expression will contribute to understanding the functional differences between these subpopulations and their contributions to immune protection. Here, we annotated three genomic assemblies of the swine TCRγ gene locus finding four gene cassettes containing C, J and V genes, although some haplotypes carried a null TRGC gene (TRGC4). Genes in the TRGC1 cassette were homologs of bovine TRGC5 cassette while the others were not homologous to bovine genes. Here we evaluated three principal populations of γδ T cells (CD2+/SWC5-, CD2-/SWC5+, and CD2-/SWC5-). Both CD2- subpopulations transcribed WC1 co-receptor genes, albeit with different patterns of gene expression but CD2+ cells did not. All subpopulations transcribed TCR genes from all four cassettes, although there were differences in expression levels. Finally, the CD2+ and CD2- γδ T-cell populations differed in their representation in various organs and tissues, presumably at least partially reflective of different ligand specificities for their receptors.


Subject(s)
Cattle/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Ruminants/immunology , Swine/immunology , T-Lymphocytes/immunology , Animals , CD2 Antigens/metabolism , Genes, T-Cell Receptor/genetics , Membrane Glycoproteins/metabolism
4.
Transbound Emerg Dis ; 67 Suppl 2: 119-128, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31515956

ABSTRACT

The immediate objective of our research is to understand the molecular mechanisms underlying activation and potentiation of the protective functional response of WC1+ γδ T cells to pathogens afflicting livestock species. The long-term goal is to incorporate stimulation of these cells into the next generation of vaccine constructs. γδ T cells have roles in the immune response to many infectious diseases including viral, bacterial, protozoan and worm infections, and their functional responses overlap with those of canonical αß T cells, for example they produce cytokines including interferon-γ and IL-17. Stimulation of non-conventional lymphocytes including γδ T cells and αß natural killer T (NKT) cells has been shown to contribute to protective immunity in mammals, bridging the gap between the innate and adaptive immune responses. Because of their innate-like early response, understanding how to engage γδ T-cell responses has the potential to optimize strategies of those that aim to induce pro-inflammatory responses as discussed here.


Subject(s)
Cytokines/immunology , Intraepithelial Lymphocytes/immunology , Livestock/immunology , Membrane Glycoproteins/immunology , Animals , Interferon-gamma/immunology , Interleukin-17/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...