Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 118(5): 054801, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211708

ABSTRACT

In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of terahertz coherent synchrotron radiation. Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

2.
Rev Sci Instrum ; 87(10): 103111, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802701

ABSTRACT

Single-shot recording of terahertz electric signals has recently become possible at high repetition rates, by using the photonic time-stretch electro-optic sampling (EOS) technique. However the moderate sensitivity of time-stretch EOS is still a strong limit for a range of applications. Here we present a variant enabling to increase the sensitivity of photonic time-stretch for free-propagating THz signals. The ellipticity of the laser probe is enhanced by adding a set of Brewster plates, as proposed by Ahmed et al. [Rev. Sci. Instrum. 85, 013114 (2014)] in a different context. The method is tested using the high repetition rate terahertz coherent synchrotron radiation source of the SOLEIL synchrotron radiation facility. The signal-to-noise ratio of our terahertz digitizer could thus be straightforwardly improved by a factor ≈6.5, leading to a noise-equivalent input electric field below 1.25 V/cm inside the electro-optic crystal, over the 0-300 GHz band (i.e., 2.3 µV/cm/Hz). The sensitivity is scalable with respect to the available laser power, potentially enabling further sensitivity improvements when needed.

3.
Sci Rep ; 5: 10330, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26020859

ABSTRACT

Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

SELECTION OF CITATIONS
SEARCH DETAIL
...