Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(14): 3119-3128, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31794079

ABSTRACT

The development of molecular materials for conversion of solar energy into electricity and fuels is one of the most active research areas, in which the light absorber plays a key role. While copper(I)-bis(diimine) complexes [CuI (L)2 ]+ are considered as potent substitutes for [RuII (bpy)3 ]2+ , they exhibit limited structural integrity as ligand loss by substitution can occur. In this article, we present a new concept to stabilize copper bis(phenanthroline) complexes by macrocyclization of the ligands which are preorganized around the CuI ion. Using oxidative Hay acetylene homocoupling conditions, several CuI complexes with varying bridge length were prepared and analyzed. Absorption and emission properties are assessed; rewardingly, the envisioned approach was successful since the flexible 1,4-butadiyl-bridged complex does show enhanced MLCT absorption and emission, as well as improved photostability upon irradiation with a blue LED compared to a reference complex.

2.
Langmuir ; 28(15): 6485-93, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22432412

ABSTRACT

A series of perylene dyes with different optical and electronic properties have been used as photosensitizers in NiO-based p-type dye-sensitized solar cells. A key target is to develop dyes that absorb light in the red to near-infrared region of the solar spectrum in order to match photoanodes optically in tandem devices; however, the photocurrent produced was found to decrease dramatically as the absorption maxima of the dye used was varied from 517 to 565 nm and varied strongly with the electrolyte solvent (acetonitrile, propionitrile, or propylene carbonate). To determine the limitations of the energy properties of the dye molecules and to provide guidelines for future sensitizer design, we have determined the redox potentials of the diiodide radical intermediate involved in the charge-transfer reactions in different solvents using photomodulated voltammetry. E°(I(3)(-)/I(2)(•-)) (V vs Fe(Cp)(2)(+/0)) = -0.64 for propylene carbonate, -0.82 for acetonitrile, and -0.87 for propionitrile. Inefficient regeneration of the sensitizer appears to be the efficiency-limiting step in the device, and the values presented here will be used to design more efficient dyes, with more cathodic reduction potentials, for photocathodes in tandem dye-sensitized solar cells.

3.
Chem Commun (Camb) ; 48(5): 678-80, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22138795

ABSTRACT

Ultrafast recombination observed from several perylene imide sensitizers bound to NiO appears to align with Marcus normal region behaviour; this indicates recombination to intra-bandgap states.

4.
J Phys Chem A ; 115(20): 5069-80, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21534563

ABSTRACT

A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.


Subject(s)
Click Chemistry , Dendrimers/chemical synthesis , Metalloporphyrins/chemical synthesis , Dendrimers/chemistry , Electrochemistry , Metalloporphyrins/chemistry , Molecular Structure , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Stereoisomerism
5.
Acc Chem Res ; 43(8): 1063-71, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20455541

ABSTRACT

Because solar energy is the most abundant renewable energy resource, the clear connection between human activity and global warming has strengthened the interest in photovoltaic science. Dye-sensitized solar cells (DSSCs) provide a promising low-cost technology for harnessing this energy source. Until recently, much of the research surrounding DSSCs had been focused on the sensitization of n-type semiconductors, such as titanium dioxide (Gratzel cells). In an n-type dye-sensitized solar cell (n-DSSC), an electron is injected into the conduction band of an n-type semiconductor (n-SC) from the excited state of the sensitizer. Comparatively few studies have examined the sensitization of wide bandgap p-type semiconductors. In a p-type DSSC (p-DSSC), the photoexcited sensitizer is reductively quenched by hole injection into the valence band of a p-type semiconductor (p-SC). The study of p-DSSCs is important both to understand the factors that control the rate of hole photoinjection and to aid the rational design of efficient p-DSSCs. In theory, p-DSSCs should be able to work as efficiently as n-DSSCs. In addition, this research provides a method for preparing tandem DSSCs consisting of a TiO(2)-photosensitized anode and a photosensitized p-type SC as a cathode. Tandem DSSCs are particularly important because they represent low-cost photovoltaic devices whose photoconversion efficiencies could exceed 15%. This Account describes recent research results on p-DSSCs. Because these photoelectrochemical devices are the mirror images of conventional n-DSSCs, they share some structural similarities, but they use different materials and have different charge transfer kinetics. In this technology, nickel oxide is the predominant p-SC material used, but much higher photoconversion efficiencies could be achieved with new p-SCs materials with deeper valence band potential. Currently, iodide/triiodide is the main redox mediator of electron transport within these devices, but we expect that this material could be advantageously replaced with more efficient redox couples. We also discuss valuable information obtained by ultrafast transient absorption spectroscopy, which sheds some light on the factors that govern the efficiency of the cell. Notably, we demonstrate that ultrafast hole injection generally occurs between the sensitizer and the SC, but the resulting charge-separated state (e.g. electron on the sensitizer and hole in the VB) is short-lived and recombines quickly. So far, the only effective strategy for slowing the back recombination reaction relies on a bimolecular system consisting of the sensitizer linked to an electron acceptor, which increases the separation distance between the charges. A photoconversion efficiency of 0.41% under AM 1.5 was recently measured with a p-type DSSC using this strategy.

6.
Angew Chem Int Ed Engl ; 48(24): 4402-5, 2009.
Article in English | MEDLINE | ID: mdl-19431175

ABSTRACT

In tandem: Employing a molecular dyad and a cobalt-based electrolyte gives a threefold-increase in open-circuit voltage (V(OC)) for a p-type NiO device (V(OC) = 0.35 V), and a fourfold better energy conversion efficiency. Incorporating these improvements in a TiO(2)/NiO tandem dye-sensitized solar cell (TDSC), results in a TDSC with a V(OC) = 0.91 V (see figure; CB = conductance band, VB = valence band).

7.
Phys Chem Chem Phys ; 11(39): 8767-73, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-20449021

ABSTRACT

A multi-porphyrin cluster has been covalently attached to a polyoxometallate (POM) catalyst so as to form an advanced model for the photosynthetic reaction complex. This bio-inspired mimic displays efficient energy transfer from the peripheral zinc porphyrins (ZnP) to the central free-base porphyrin (FbP). The latter species participates in a light-induced electron transfer with the POM. Charge recombination is hindered by hole transfer from the FbP to one of the ZnPs. Charge accumulation occurs at the POM under illumination in the presence of a sacrificial electron donor.


Subject(s)
Metalloporphyrins/chemistry , Porphyrins/chemistry , Zinc/chemistry , Biocatalysis , Energy Transfer , Photosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...