Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(20): 11239-11257, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37811881

ABSTRACT

BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.


Subject(s)
Alternative Splicing , RNA Precursors , Apoptosis , Protein Isoforms/genetics , RNA Precursors/genetics , RNA Splice Sites , Humans
2.
Biochimie ; 214(Pt A): 57-68, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37473831

ABSTRACT

The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Humans , Herpesvirus 4, Human/genetics , RNA , Immune System
3.
Nucleic Acids Res ; 50(20): 11799-11819, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36350639

ABSTRACT

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Tumor Virus Infections , Humans , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Immune System/metabolism , Oncogenic Viruses/genetics , Oncogenic Viruses/metabolism , Protein-Arginine N-Methyltransferases , Repressor Proteins , RNA, Messenger/metabolism , Tumor Virus Infections/drug therapy , Tumor Virus Infections/metabolism
4.
Nucleic Acids Res ; 50(17): 10110-10122, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36107769

ABSTRACT

Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine-alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , RNA-Binding Proteins/metabolism , Alanine , Epstein-Barr Virus Nuclear Antigens/metabolism , Glycine , Herpesvirus 4, Human/genetics , Humans , Peptides/genetics , Phosphoproteins , Protein Aggregates , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nucleolin
5.
Med Mycol ; 60(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35713494

ABSTRACT

Aspergillosis is pervasive in bird populations, especially those under human care. Its management can be critically impacted by exposure to high levels of conidia and by resistance to azole drugs. The fungal contamination in the environment of a Humboldt penguin (Spheniscus humboldti) group, housed in a French zoological park next to numerous large crop fields, was assessed through three serial sessions of surface sampling in nests, in 2018-20: all isolates were counted and characterized by sequencing. When identified as Aspergillus fumigatus, they were systematically screened for resistance mutations in the cyp51A gene and tested for minimal inhibitory concentrations (MICs) determination. At the same time, the clinical incidence of aspergillosis was evaluated in the penguin population by the means of systematic necropsy and mycological investigations. A microsatellite-based analysis tracked the circulation of A. fumigatus strains. Environmental investigations highlighted the substantial increase of the fungal load during the summer season (>12-fold vs. the other timepoints) and a large overrepresentation of species belonging to the Aspergillus section Fumigati, ranging from 22.7 to 94.6% relative prevalence. Only one cryptic species was detected (A. nishimurae), and one isolate exhibited G138S resistance mutation with elevated MICs. The overall incidence of aspergillosis was measured at ∼3.4% case-years, and mostly in juveniles. The analysis of microsatellite polymorphism revealed a high level of genetic diversity among A. fumigatus clinical isolates. In contrast, one environmental strain appeared largely overrepresented during the summer sampling session. In all, the rural location of the zoo did not influence the emergence of resistant strains.


Subject(s)
Aspergillosis , Spheniscidae , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/microbiology , Aspergillosis/veterinary , Aspergillus fumigatus , Azoles/pharmacology , Drug Resistance, Fungal , Fungal Proteins/genetics , Humans , Managed Care Programs , Microbial Sensitivity Tests/veterinary , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...