Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 263: 113984, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38744124

ABSTRACT

Scanning probe microscopy (SPM) is ubiquitous in nanoscale science allowing the observation of features in real space down to the angstrom resolution. The scanning nature of SPM, wherein a sharp tip rasters the surface during which a physical setpoint is maintained via a control feedback loop, often implies that the image is subject to drift effects, leading to distortion of the resulting image. While there are in-operando methods to compensate for the drift, correcting the residual linear drift in obtained images is often neglected. In this paper, we present a reciprocal space-based technique to compensate the linear drift in atomically-resolved scanning probe microscopy images without distinction of the fast and slow scanning directions; furthermore this method does not require the set of SPM images obtained for the different scanning directions. Instead, the compensation is made possible by the a priori knowledge of the lattice parameters. The method can also be used to characterize and calibrate the SPM instrument.

2.
Nanotechnology ; 31(27): 275709, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32208377

ABSTRACT

The strongly correlated rare earth nitrides display unusual coupled magnetic, electronic and superconducting properties, with predicted topological states. However, their air-sensitiveness has prevented in-depth investigations of their properties. In this paper, we show that a 100 nm thick epitaxial samarium layer provides adequate passivation of 100 nm thick thin films of gadolinium nitride (GdN), the prototypical rare earth nitride, enabling ex-situ magnetic and structural characterizations. Using reflection high-energy electron diffraction, atomic force microscopy and energy dispersive x-ray spectroscopy, we investigate the thermal desorption of the samarium layer under vacuum. We finally demonstrate successful removal of the samarium capping layer in a separate vacuum chamber after exposure to air using a combination of argon ion sputtering and thermal desorption at 400 °C, recovering the GdN surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...