Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(5): e2305984, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37938141

ABSTRACT

Coke formation is the prime cause of catalyst deactivation, where undesired carbon wastes block the catalyst surface and hinder further reaction in a broad gamut of industrial chemical processes. Yet, the origins of coke formation and their distribution across the catalyst remain elusive, obstructing the design of coke-resistant catalysts. Here, the first-time application of tip-enhanced Raman spectroscopy (TERS) is demonstrated as a nanoscale chemical probe to localize and identify coke deposits on a post-mortem metal nanocatalyst. Monitoring coke at the nanoscale circumvents bulk averaging and reveals the local nature of coke with unmatched detail. The nature of coke is chemically diverse and ranges from nanocrystalline graphite to disordered and polymeric coke, even on a single nanoscale location of a top-down nanoprinted SiO2 -supported Pt catalyst. Surprisingly, not all Pt is an equal producer of coke, where clear isolated coke "hotspots" are present non-homogeneously on Pt which generate large amounts of disordered coke. After their formation, coke shifts to the support and undergoes long-range transport on the surrounding SiO2 surface, where it becomes more graphitic. The presented results provide novel guidelines to selectively free-up the coked metal surface at more mild rejuvenation conditions, thus securing the long-term catalyst stability.

2.
Phys Rev Lett ; 127(23): 235501, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34936792

ABSTRACT

The removal of microbubbles from substrates is crucial for the efficiency of many catalytic and electrochemical gas evolution reactions in liquids. The current work investigates the coalescence and detachment of bubbles generated from catalytic decomposition of hydrogen peroxide. Self-propelled detachment, induced by the coalescence of two bubbles, is observed at sizes much smaller than those determined by buoyancy. Upon coalescence, the released surface energy is partly dissipated by the bubble oscillations, working against viscous drag. The remaining energy is converted to the kinetic energy of the out-of-plane jumping motion of the merged bubble. The critical ratio of the parent bubble sizes for the jumping to occur is theoretically derived from an energy balance argument and found to be in agreement with the experimental results. The present results provide both physical insight for the bubble interactions and practical strategies for applications in chemical engineering and renewable energy technologies like electrolysis.

3.
Microsyst Nanoeng ; 7: 28, 2021.
Article in English | MEDLINE | ID: mdl-34567742

ABSTRACT

We report a robust fabrication method for patterning freestanding Pt nanowires for use as thermal anemometry probes for small-scale turbulence measurements. Using e-beam lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) were patterned on the surface of oxidized silicon (Si) wafers. Combining wet etching processes with dry etching processes, these Pt nanowires were successfully released, rendering them freestanding between two silicon dioxide (SiO2) beams supported on Si cantilevers. Moreover, the unique design of the bridge holding the device allowed gentle release of the device without damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of e-beam lithography to the patterning of the Pt nanowires, while standard photolithography was employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable for turbulence measurements when operated in constant-current mode. A robust calibration between the output voltage and the fluid velocity was established over the velocity range from 0.5 to 5 m s-1 in a SF6 atmosphere at a pressure of 2 bar and a temperature of 21 °C. The sensing signal from the nanowires showed negligible drift over a period of several hours. Moreover, we confirmed that the nanowires can withstand high dynamic pressures by testing them in air at room temperature for velocities up to 55 m s-1.

4.
ACS Appl Mater Interfaces ; 12(33): 37657-37669, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814417

ABSTRACT

Hierarchical plasmonic-photonic microspheres (PPMs) with high controllability in their structures and optical properties have been explored toward surface-enhanced Raman spectroscopy. The PPMs consist of gold nanocrystal (AuNC) arrays (3rd-tier) anchored on a hexagonal nanopattern (2nd-tier) assembled from silica nanoparticles (SiO2NPs) where the uniform microsphere backbone is termed the 1st-tier. The PPMs sustain both photonic stop band (PSB) properties, resulting from periodic SiO2NP arrangements of the 2nd-tier, and a surface plasmon resonance (SPR), resulting from AuNC arrays of the 3rd-tier. Thanks to the synergistic effects of the photonic crystal (PC) structure and the AuNC array, the electromagnetic (EM) field in such a multiscale composite structure can tremendously be enhanced at certain wavelengths. These effects are demonstrated by experimentally evaluating the Raman enhancement of benzenethiol (BT) as a probe molecule and are confirmed via numerical simulations. We achieve a maximum SERS enhancement factor of up to ∼108 when the resonances are tailored to coincide with the excitation wavelength by suitable structural modifications.

5.
J Phys Chem C Nanomater Interfaces ; 124(4): 2591-2597, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32030112

ABSTRACT

Metal nanoparticles under laser irradiation can produce enormous heat due to surface plasmon resonance. When submerged in a liquid, this can lead to the nucleation of plasmonic bubbles. In the very early stage, the nucleation of a giant vapor bubble was observed with an ultrahigh-speed camera. In this study, the formation of this giant bubble on gold nanoparticles in six binary liquid combinations has been investigated. We find that the time delay between the beginning of the laser heating and the bubble nucleation is determined by the absolute amount of dissolved gas in the liquid. Moreover, the bubble volume mainly depends on the vaporization energy of the liquid, consisting of the latent heat of vaporization and the energy needed to reach the boiling temperature. Our results contribute to controlling the initial giant bubble nucleation and have strong bearings on applications of such bubbles.

6.
Microsyst Nanoeng ; 6: 25, 2020.
Article in English | MEDLINE | ID: mdl-34567640

ABSTRACT

The current progress of system miniaturization relies extensively on the development of 3D machining techniques to increase the areal structure density. In this work, a wafer-scale out-of-plane 3D silicon (Si) shaping technology is reported, which combines a multistep plasma etching process with corner lithography. The multistep plasma etching procedure results in high aspect ratio structures with stacked semicircles etched deep into the sidewall and thereby introduces corners with a proper geometry for the subsequent corner lithography. Due to the geometrical contrast between the gaps and sidewall, residues are left only inside the gaps and form an inversion mask inside the semicircles. Using this mask, octahedra and donuts can be etched in a repeated manner into Si over the full wafer area, which demonstrates the potential of this technology for constructing high-density 3D structures with good dimensional control in the bulk of Si wafers.

7.
J Phys Chem C Nanomater Interfaces ; 123(38): 23586-23593, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31583035

ABSTRACT

Under continuous laser irradiation, noble metal nanoparticles immersed in water can quickly heat up, leading to the nucleation of so-called plasmonic bubbles. In this work, we want to further understand the bubble nucleation and growth mechanism. In particular, we quantitatively study the effect of the amount of dissolved air on the bubble nucleation and growth dynamics, both for the initial giant bubble, which forms shortly after switching on the laser and is mainly composed of vapor, and for the final life phase of the bubble, during which it mainly contains air expelled from water. We found that the bubble nucleation temperature depends on the gas concentration: the higher the gas concentration, the lower the bubble nucleation temperature. Also, the long-term diffusion-dominated bubble growth is governed by the gas concentration. The radius of the bubbles grows as R(t) ∝ t 1/3 for air-equilibrated and air-oversaturated water. In contrast, in partially degassed water, the growth is much slower since, even for the highest temperature we achieve, the water remains undersaturated.

8.
Nanoscale ; 11(25): 12152-12160, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31194202

ABSTRACT

We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps. Using this method, we successfully fabricate high-quality Au nanogaps down to 10 nm over full wafer areas. Moreover, the gap spacing can be tuned by changing the thickness of deposited Au layers. Since the roughness of the template is minimized by the crystallographic etching of silicon, the roughness of the gold nanogaps depends almost exclusively on the roughness of the sputtered gold layers. Additionally, our fabricated Au nanogaps show a significant enhancement of surface-enhanced Raman scattering (SERS) signals of benzenethiol molecules chemisorbed on the structure surface, at an average enhancement factor up to 1.5 × 106.

9.
ACS Nano ; 13(6): 6782-6789, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31189059

ABSTRACT

We found that continuous films of gold (Au) on oxidized silicon (SiO2) substrates, upon treatment with ultraviolet (UV)-ozone, exhibit strong adhesion to the SiO2 support. Importantly, the enhancement is independent of micro- or nanostructuring of such nanometer-thick films. Deposition of a second Au layer on top of the pretreated Au layer makes the adhesion stable for at least 5 months in environmental air. Using this treatment method enables us to large-scale fabricate various SiO2-supported Au structures at various thicknesses with dimensions spanning from a few hundreds of nanometers to a few micrometers, without the use of additional adhesion layers. We explain the observed adhesion improvement as polarization-induced increased strength of Auδ-Siδ+ bonds at the Au-SiO2 interface due to the formation of a gold oxide monolayer on the Au surface by the UV-ozone treatment. Our simple and enabling method thus provides opportunities for patterning Au micro/nanostructures on SiO2 substrates without an intermediate metallic adhesion layer, which is critical for biosensing and nanophotonic applications.

10.
ACS Nano ; 13(3): 3638-3648, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30856322

ABSTRACT

Construction of textured bioinspired surfaces with refined structures that exhibit superior wetting properties is of great importance for many applications ranging from self-cleaning, antibiofouling, anti-icing, oil/water separation, smart membrane, and microfluidic devices. Previously, the preparation of artificial surfaces generally relies on the combination of different approaches together, which is a lack of flexibility to control over the individual architecture unit, the surface topology, as well as the complex procedure needed. In this work, we report a method for rapid fabrication of three-tier hierarchical microunits (structures consisting of multiple levels) using a facile droplet microfluidics approach. These units include the first-tier microspheres consisting of the second-tier close-packed polystyrene (PS) nanoparticles decorated with the third-tier elegant polymer nanowrinkles. These nanowrinkles on the PS nanoparticles are formed according to the interfacial instability induced by gradient photopolymerization of N-isopropylacrylamide (NIPAM) monomers. The formation process and topologies of nanowrinkles can be regulated by the photopolymerization process and the fraction of carboxylic groups on the PS nanoparticle surface. Such a hierarchical microsphere mimics individual units of bioinspired surfaces. Therefore, the surfaces from self-assembly of these fabricated two-tier and three-tier hierarchical microunits collectively exhibit "gecko" and "rose petal" wetting states, with the micro- and nanoscale structures amplifying the initial hydrophobicity but still being highly adhesive to water. This approach offers promising advantages of high-yield fabrication, precise control over the size and component of the microspheres, and integration of microfluidic droplet generation, colloidal nanoparticle self-assembly, and interfacial polymerization-induced nanowrinkles in a straightforward manner.


Subject(s)
Acrylamides/chemical synthesis , Microfluidic Analytical Techniques , Nanoparticles/chemistry , Polystyrenes/chemistry , Acrylamides/chemistry , Microscopy , Microspheres , Particle Size , Polymerization , Surface Properties
11.
Nanotechnology ; 30(6): 065301, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30523814

ABSTRACT

We found that platinum (Pt) nanoparticles, upon annealing at high temperature of 1000 °C, are engulfed into amorphous fused-silica or thermal oxide silicon substrates. The same phenomenon was previously published for gold (Au) nanoparticles. Similar to the Au nanoparticles, the engulfed Pt nanoparticles connect to the surface of the substrates through conical nanopores, and the size of the Pt nanoparticles decreases with increasing depth of the nanopores. We explain the phenomena as driven by the formation of platinum oxide by reaction of the platinum with atmospheric oxygen, with platinum oxide evaporating to the environment. We found that the use of Pt provides much better controllability than the use of Au. Due to the high vapor pressure of platinum oxide, the engulfment of the Pt nanoparticles into oxidized silicon (SiO2) substrates is faster than of Au nanoparticles. At high temperature annealing we also find that the aggregation of Pt nanoparticles on the substrate surface is insignificant. As a result, the Pt nanoparticles are uniformly engulfed into the substrates, leading to an opportunity for patterning dense nanopore arrays. Moreover, the use of oxidized Si substrates enables us to precisely control the depth of the nanopores since the engulfment of Pt nanoparticles stops at a short distance above the SiO x /Si interface. After subsequent etching steps, a membrane with dense nanopore through-holes with diameters down to sub-30 nm is obtained. With its simple operation and high controllability, this fabrication method provides an alternative for rapid patterning of dense arrays of solid-state nanopores at low-cost.

12.
Nanoscale ; 10(16): 7711-7718, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29658030

ABSTRACT

Free-standing polydimethylsiloxane (PDMS) through-hole membranes have been studied extensively in recent years for chemical and biomedical applications. However, robust fabrication of such membranes with sub-µm through-holes, and at a sub-µm thickness over large areas is challenging. In this paper, we report a robust and simple method for large-scale fabrication of free-standing and sub-µm PDMS through-hole membranes, combining soft-lithography with reactive plasma etching techniques. First, arrays of sub-µm photoresist (PR) columns were patterned on another spin-coated sacrificial PR layer, using conventional photolithography processes. Subsequently, a solution of PDMS : hexane at a 1 : 10 ratio was spin-coated over these fabricated arrays. The cured PDMS membrane was etched in a plasma mixture of sulfur hexafluoride (SF6) and oxygen (O2) to open the through-holes. This PDMS membrane can be smoothly released with a supporting ring by completely dissolving the sacrificial PR structures in acetone. Using this fabrication method, we demonstrated the fabrication of free-standing PDMS membranes at various sub-µm thicknesses down to 600 ± 20 nm, and nanometer-sized through-hole (810 ± 20 nm diameter) densities, over areas as large as 3 cm in diameter. Furthermore, we demonstrated the potential of the as-prepared membranes as cell-culture substrates for biomedical applications by culturing endothelial cells on these membranes in a Transwell-like set-up.


Subject(s)
Cell Culture Techniques , Dimethylpolysiloxanes , Membranes , Human Umbilical Vein Endothelial Cells , Humans , Oxygen , Sulfur Hexafluoride
13.
Microsyst Nanoeng ; 4: 4, 2018.
Article in English | MEDLINE | ID: mdl-31057894

ABSTRACT

Periodic noble metal nanoparticles offer a wide spectrum of applications including chemical and biological sensors, optical devices, and model catalysts due to their extraordinary properties. For sensing purposes and catalytic studies, substrates made of glass or fused-silica are normally required as supports, without the use of metallic adhesion layers. However, precise patterning of such uniform arrays of silica-supported noble metal nanoparticles, especially at sub-100 nm in diameter, is challenging without adhesion layers. In this paper, we report a robust method to large-scale fabricate highly ordered sub-20 nm noble metal nanoparticles, i.e., gold and platinum, supported on silica substrates without adhesion layers, combining displacement Talbot lithography (DTL) with dry-etching techniques. Periodic photoresist nanocolumns at diameters of ~110 nm are patterned on metal-coated oxidized silicon wafers using DTL, and subsequently transferred at a 1:1 ratio into anti-reflection layer coating (BARC) nanocolumns with the formation of nano-sharp tips, using nitrogen plasma etching. These BARC nanocolumns are then used as a mask for etching the deposited metal layer using inclined argon ion-beam etching. We find that increasing the etching time results in cone-shaped silica features with metal nanoparticles on the tips at diameters ranging from 100 nm to sub-30 nm, over large areas of 3×3 cm2. Moreover, subsequent annealing these sub-30 nm metal nanoparticle arrays at high-temperature results in sub-20 nm metal nanoparticle arrays with ~1010 uniform particles.

14.
J Phys Chem C Nanomater Interfaces ; 121(38): 20769-20776, 2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28983387

ABSTRACT

Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) ∝ t1/2. This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble's contact line.

SELECTION OF CITATIONS
SEARCH DETAIL
...