Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1188605, 2023.
Article in English | MEDLINE | ID: mdl-37409116

ABSTRACT

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.


Subject(s)
COVID-19 , Vaccines , Animals , Cricetinae , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Nucleocapsid
2.
Lancet Infect Dis ; 23(12): 1360-1369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37517422

ABSTRACT

BACKGROUND: OVX836, a recombinant vaccine containing the nucleoprotein of the influenza A virus A/WSN/1933 (H1N1) and the oligomerisation domain OVX313, has displayed a good safety profile and elicited dose-dependent humoral and cellular immune responses at 90 µg or 180 µg (intramuscularly) in previous clinical trials. The aim of this study was to explore higher doses, since no maximum tolerated dose had been reached. METHODS: In this phase 2a, randomised, double-blind, placebo-controlled study, we recruited 137 healthy adults aged 18-55 years in a single centre in Belgium. Participants were randomly assigned (interactive web response system; block size=4) using SAS (version 9.4) to receive one single intramuscular administration of OVX836 influenza vaccine at three doses (180 µg [n=33], 300 µg [n=35], and 480 µg [n=36]) or placebo (n=33). The two primary endpoints were the safety and the cell-mediated immune response to OVX836 at the three doses in terms of change of nucleoprotein-specific IFNγ spot forming cell (SFC) frequencies in the peripheral blood mononuclear cell (PBMC) population, measured by IFNγ ELISpot, at day 8 versus pre-injection baseline (day 1). The population used for the safety analysis is the modified intention-to-treat cohort. The population used for the immunogenicity analysis is the per-protocol cohort. This trial is registered with ClinicalTrials.gov, NCT05060887, and EudraCT, 2021-002535-39. FINDINGS: Participants were recruited between Nov 15, 2021, and Feb 1, 2022. OVX836 had a favourable safety profile up to 480 µg without reaching the maximum tolerated dose, and showed a good safety profile at all doses with mild local and systemic reactogenicity. 7 days after vaccination, although no significant differences were observed between the doses, OVX836 increased the frequency of nucleoprotein-specific IFNγ SFCs per million PBMCs from days 1 to 8 (primary endpoint): by 124 SFCs per 106 PMBCs (95% CI 67 to 180; p=0·002) at 180 µg; by 202 SFCs per 106 PMBCs (95% CI 138 to 267; p<0·0001) at 300 µg; by 223 SFCs per 106 PMBCs (95% CI 147 to 299; p<0·0001) at 480 µg; and decreased by 1 SFCs per 106 PMBCs (95% CI -24 to 22] in the placebo group (Kruskal-Wallis test p<0·0001 followed by Mann-Whitney's tests; per-protocol cohort). Dose-dependent and polyfunctional nucleoprotein-specific CD4 T-cell responses were observed, and CD8 T-cell responses were elicited at 300 µg and 480 µg (secondary endpoints). INTERPRETATION: OVX836 appears to be a safe and well tolerated candidate vaccine that elicits humoral and cellular nucleoprotein-specific immune responses (including CD8 T cells at the highest dose levels) and showed a preliminary signal of protection against influenza. Therefore, OVX836 is a promising vaccine candidate for universal influenza A prevention, that warrants further trials. FUNDING: OSIVAX, Bpifrance, Wallonia Region, and the EUs Horizon 2020 Research and Innovation Program.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , Antibodies, Viral , Double-Blind Method , Immunogenicity, Vaccine , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Leukocytes, Mononuclear , Vaccination , Adolescent , Young Adult , Middle Aged
3.
Front Immunol ; 13: 852904, 2022.
Article in English | MEDLINE | ID: mdl-35464450

ABSTRACT

OVX836 is a recombinant protein-based vaccine targeting the highly conserved influenza nucleoprotein (NP), which aims to confer a broad-spectrum protection against influenza. In a Phase 1 study, OVX836, administered intramuscularly, has been found safe and immunogenic. The 90µg and 180µg dose levels were selected to be further evaluated in this randomized, monocenter, reference-controlled (Influvac Tetra™: quadrivalent seasonal influenza subunit vaccine), parallel group, double-blind, Phase 2a study in 300 healthy volunteers, aged 18-65 years, during the 2019/2020 flu season. Safety, influenza-like illness episodes (ILI; based on the Flu-PRO® questionnaire) and immunogenicity were assessed up to 180 days post-vaccination. OVX836 was safe and presented a reactogenicity profile similar to Influvac Tetra. It induced a significant increase in terms of NP-specific interferon-gamma (IFNγ) spot forming cells (SFCs), NP-specific CD4+ T-cells (essentially polyfunctional cells) and anti-NP IgG responses. OVX836 was superior to Influvac Tetra for all immunological parameters related to NP, and the 180µg dose was significantly superior to the 90µg dose for SFCs and CD4+ T-cells expressing IFNγ. Both the CD4+ T-cell and the anti-NP IgG responses persisted up to Day 180. An efficacy signal was observed with OVX836 at 180µg through reduction of ILI episodes occurring during the flu season as of 14 days post-vaccination. In conclusion, these results encourage further clinical evaluation of OVX836 in order to confirm the signal of efficacy on ILIs and/or laboratory-confirmed influenza cases. NCT04192500 (https://clinicaltrials.gov/ct2/show/study/NCT04192500).


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Adult , Aged , Double-Blind Method , Humans , Immunoglobulin G , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Interferon-gamma , Middle Aged , Nucleoproteins , Vaccines, Combined , Vaccines, Synthetic , Young Adult
4.
J Infect Dis ; 226(1): 119-127, 2022 08 12.
Article in English | MEDLINE | ID: mdl-34653245

ABSTRACT

BACKGROUND: OVX836 is a recombinant protein vaccine targeting the highly conserved influenza nucleoprotein (NP), which could confer broad-spectrum protection against this disease. METHODS: A randomized, placebo-controlled, double-blind, dose-escalating, single- center, first-in-human study was conducted in 36 healthy adults aged 18-49 years. Twelve subjects per cohort (9 vaccine and 3 placebo) received 2 OVX836 intramuscular administrations on days 1 and 28 at the dose level of 30 µg, 90 µg, or 180 µg. Safety and immunogenicity were assessed after each vaccination and for 150 days in total. RESULTS: OVX836 was safe and well tolerated at all dose levels, with no difference in solicited local and systemic symptoms, and unsolicited adverse events between the first and second administration, or between dose levels. All subjects presented pre-existing NP-specific immunity at baseline. OVX836 induced a significant increase in NP-specific interferon-gamma T cells and anti-NP immunoglobulin G at all dose levels after the first vaccination. The second vaccination did not further increase the response. There was a trend for a dose effect in the immune response. CONCLUSIONS: The safety and reactogenicity profile, as well as the humoral and cellular immune responses, encourage further evaluation of OVX836 in a larger Phase 2a study.


Subject(s)
Influenza Vaccines , Influenza, Human , Adult , Antibodies, Viral , Double-Blind Method , Humans , Immunogenicity, Vaccine , Influenza, Human/prevention & control , Nucleoproteins , Vaccination/methods , Vaccines, Synthetic
5.
Front Immunol ; 12: 678483, 2021.
Article in English | MEDLINE | ID: mdl-34177921

ABSTRACT

Tissue-resident memory (TRM) CD8+ T-cells play a crucial role in the protection against influenza infection but remain difficult to elicit using recombinant protein vaccines. OVX836 is a recombinant protein vaccine, obtained by the fusion of the DNA sequence of the influenza A nucleoprotein (NP) to the DNA sequence of the OVX313 heptamerization domain. We previously demonstrated that OVX836 provides broad-spectrum protection against influenza viruses. Here, we show that OVX836 intramuscular (IM) immunization induces higher numbers of NP-specific IFNγ-producing CD8+ T-cells in the lung, compared to mutant NP (NPm) and wild-type NP (NPwt), which form monomeric and trimeric structures, respectively. OVX836 induces cytotoxic CD8+ T-cells and high frequencies of lung TRM CD8+ T-cells, while inducing solid protection against lethal influenza virus challenges for at least 90 days. Adoptive transfer experiments demonstrated that protection against diverse influenza subtypes is mediated by NP-specific CD8+ T-cells isolated from the lung and spleen following OVX836 vaccination. OVX836 induces a high number of NP-specific lung CD8+ TRM-cells for long-term protection against influenza viruses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Animals , Antibodies, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Humans , Immunization , Influenza, Human/prevention & control , Interferon-gamma/metabolism , Lung/immunology , Lung/metabolism , Lung/virology , Mice , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/immunology , Organ Specificity/immunology
6.
NPJ Vaccines ; 4: 4, 2019.
Article in English | MEDLINE | ID: mdl-30701093

ABSTRACT

Inactivated influenza vaccines (IIVs) lack broad efficacy. Cellular immunity to a conserved internal antigen, the nucleoprotein (NP), has been correlated to protection against pandemic and seasonal influenza and thus could have the potential to broaden vaccine efficacy. We developed OVX836, a recombinant protein vaccine based on an oligomerized NP, which shows increased uptake by dendritic cells and immunogenicity compared with NP. Intramuscular immunization in mice with OVX836 induced strong NP-specific CD4+ and CD8+ T-cell systemic responses and established CD8+ tissue memory T cells in the lung parenchyma. Strikingly, OVX836 protected mice against viral challenge with three different influenza A subtypes, isolated several decades apart and induced a reduction in viral load. When co-administered with IIV, OVX836 was even more effective in reducing lung viral load.

7.
Vaccine ; 34(11): 1412-21, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26854906

ABSTRACT

INTRODUCTION: There is an urgent need for a new and effective tuberculosis vaccine because BCG does not sufficiently prevent pulmonary disease. IMX313 is a novel carrier protein designed to improve cellular and humoral immunity. MVA85A-IMX313 is a novel vaccine candidate designed to boost immunity primed by bacillus Calmette-Guérin (BCG) that has been immunogenic in pre-clinical studies. This is the first evaluation of IMX313 delivered as MVA85A-IMX313 in humans. METHODS: In this phase 1, open-label first-in-human trial, 30 healthy previously BCG-vaccinated adults were enrolled into three treatment groups and vaccinated with low dose MVA85A-IMX313 (group A), standard dose MVA85A-IMX313 (group B), or MVA85A (group C). Volunteers were followed up for 6 months for safety and immunogenicity assessment. RESULTS: The majority of adverse events were mild and there were no vaccine-related serious AEs. Both MVA85A-IMX313 and MVA85A induced a significant increase in IFN-γ ELISpot responses. There were no significant differences between the Ag85A ELISpot and intracellular cytokine responses between the two study groups B (MVA85A-IMX313) and C (MVA85A) at any time point post-vaccination. CONCLUSION: MVA85A-IMX313 was well tolerated and immunogenic. There was no significant difference in the number of vaccine-related, local or systemic adverse reactions between MVA85A and MVA85A-IMX313 groups. The mycobacteria-specific cellular immune responses induced by MVA85A-IMX313 were not significantly different to those detected in the MVA85A group. In light of this encouraging safety data, further work to improve the potency of molecular adjuvants like IMX313 is merited. This trial was registered on clinicatrials.gov ref. NCT01879163.


Subject(s)
Tuberculosis Vaccines/immunology , Tuberculosis/prevention & control , Adult , Antibodies, Bacterial/blood , BCG Vaccine/administration & dosage , Cytokines/immunology , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Humans , Immunity, Cellular , Immunoglobulin G/blood , Male , Middle Aged , Tuberculosis Vaccines/administration & dosage , Tuberculosis Vaccines/adverse effects , Vaccines, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...