Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
eNeuro ; 10(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38053472

ABSTRACT

We present a cost-effective, compact foot-print, and open-source Raspberry Pi-based widefield imaging system. The compact nature allows the system to be used for close-proximity dual-brain cortical mesoscale functional-imaging to simultaneously observe activity in two head-fixed animals in a staged social touch-like interaction. We provide all schematics, code, and protocols for a rail system where head-fixed mice are brought together to a distance where the macrovibrissae of each mouse make contact. Cortical neuronal functional signals (GCaMP6s; genetically encoded Ca2+ sensor) were recorded from both mice simultaneously before, during, and after the social contact period. When the mice were together, we observed bouts of mutual whisking and cross-mouse correlated cortical activity across the cortex. Correlations were not observed in trial-shuffled mouse pairs, suggesting that correlated activity was specific to individual interactions. Whisking-related cortical signals were observed during the period where mice were together (closest contact). The effects of social stimulus presentation extend outside of regions associated with mutual touch and have global synchronizing effects on cortical activity.


Subject(s)
Calcium , Touch Perception , Mice , Animals , Pregnancy , Female , Brain/physiology , Head , Touch , Vibrissae/physiology , Somatosensory Cortex/physiology
2.
Cell Rep ; 42(10): 113128, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37742194

ABSTRACT

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Subject(s)
Connexins , Microglia , Microglia/metabolism , Reactive Oxygen Species/metabolism , Connexins/metabolism , Cell Death , Adenosine Triphosphate/metabolism
3.
Cell Rep ; 41(4): 111556, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288701

ABSTRACT

Intracellular chloride ion concentration ([Cl-]i) homeostasis is critical for excitatory/inhibitory balance and volume regulation in neurons. We quantitatively map spatiotemporal dendritic [Cl-]i dynamics during N-methyl-d-aspartate (NMDA) excitotoxicity to determine how Cl- changes contribute to localized dendritic swelling (blebbing) in stroke-like conditions. Whole-cell patch clamp electrophysiology combined with simultaneous fluorescence lifetime imaging (FLIM) of the Cl- dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE; MQAE-FLIM) reliably report resting and dynamic [Cl-]i shifts in dendrites. NMDA application generates spatially restricted and persistent high [Cl-]i subdomains at dendritic blebs in a process that requires Ca2+ influx and the subsequent opening of small-conductance Ca2+-activated K+ (SK) channels. We propose sustained and localized K+ efflux increased extracellular K+ concentrations ([K+]o) sufficiently at discrete regions to reverse K+-Cl- cotransporter (KCC2) transport and trigger synaptic swelling. Together, our data establish a mechanism for KCC2 to generate pathological [Cl-]i microdomains in blebbing with relevance for multiple neurological disorders.


Subject(s)
Chlorides , Symporters , Chlorides/metabolism , N-Methylaspartate , Bromides , Neurons/metabolism
4.
Neuron ; 110(22): 3688-3710, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36198319

ABSTRACT

Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.


Subject(s)
Alzheimer Disease , Stroke , Animals , Mice , Neurons/physiology , Brain/physiology , Alzheimer Disease/diagnostic imaging , Neurophysiology , Stroke/diagnostic imaging
5.
Biomed Opt Express ; 10(9): 4381-4394, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565496

ABSTRACT

Autofluorescence of endogenous molecules can provide valuable insights in both basic research and clinical applications. One such technique is fluorescence lifetime imaging (FLIM) of NAD(P)H, which serves as a correlate of glycolysis and electron transport chain rates in metabolically active tissue. A powerful advantage of NAD(P)H-FLIM is the ability to measure cell-specific metabolism within heterogeneous tissues. Cell-type specific identification is most commonly achieved with directed green fluorescent protein (GFP) expression. However, we demonstrate that NAD(P)H-FLIM should not be analyzed in GFP-expressing cells, as GFP molecules themselves emit photons in the blue spectrum with short fluorescence lifetimes when imaged using two-photon excitation at 750 nm. This is substantially different from the reported GFP emission wavelength and lifetime after two-photon excitation at 910 nm. These blue GFP photons are indistinguishable from free NAD(P)H by both emission spectra and fluorescence lifetime. Therefore, NAD(P)H-FLIM in GFP-expressing cells will lead to incorrect interpretations of metabolic rates, and thus, these techniques should not be combined.

6.
J Cereb Blood Flow Metab ; 39(8): 1486-1500, 2019 08.
Article in English | MEDLINE | ID: mdl-29521138

ABSTRACT

Small vessel disease is characterized by sporadic obstruction of small vessels leading to neuronal cell death. These microinfarcts often escape detection by conventional magnetic resonance imaging and are identified only upon postmortem examination. Our work explores a brain-wide microinfarct model in awake head-fixed mice, where occlusions of small penetrating arterioles are reproduced by endovascular injection of fluorescent microspheres. Mesoscopic functional connectivity was mapped longitudinally in awake GCaMP6 mice using genetically encoded calcium indicators for transcranial wide-field calcium imaging. Microsphere occlusions were quantified and changes in cerebral blood flow were measured with laser speckle imaging. The neurodeficit score in microinfarct mice was significantly higher than in sham, indicating impairment in motor function. The novel object recognition test showed a reduction in the discrimination index in microinfarct mice compared to sham. Graph-theoretic analysis of functional connectivity did not reveal significant differences in functional connectivity between sham and microinfarct mice. While behavioral tasks revealed impairments following microinfarct induction, the absence of measurable functional alterations in cortical activity has a less straightforward interpretation. The behavioral alterations produced by this model are consistent with alterations observed in human patients suffering from microinfarcts and support the validity of microsphere injection as a microinfarct model.


Subject(s)
Cerebral Infarction , Cerebrovascular Disorders , Disease Models, Animal , Animals , Behavior, Animal , Cerebral Cortex/pathology , Cerebral Infarction/pathology , Cerebrovascular Circulation , Cerebrovascular Disorders/pathology , Female , Male , Mice , Mice, Transgenic , Microspheres , Motor Disorders
7.
Epilepsia ; 59(4): 778-791, 2018 04.
Article in English | MEDLINE | ID: mdl-29468672

ABSTRACT

OBJECTIVE: Genetic alterations have been identified in the CACNA1H gene, encoding the CaV 3.2 T-type calcium channel in patients with absence epilepsy, yet the precise mechanisms relating to seizure propagation and spike-wave-discharge (SWD) pacemaking remain unknown. Neurons of the thalamic reticular nucleus (TRN) express high levels of CaV 3.2 calcium channels, and we investigated whether a gain-of-function mutation in the Cacna1h gene in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) contributes to seizure propagation and pacemaking in the TRN. METHODS: Pathophysiological contributions of CaV 3.2 calcium channels to burst firing and absence seizures were assessed in vitro using acute brain slice electrophysiology and quantitative real-time polymerase chain reaction (PCR) and in vivo using free-moving electrocorticography recordings. RESULTS: TRN neurons from GAERS display sustained oscillatory burst-firing that is both age- and frequency-dependent, occurring only in the frequencies overlapping with GAERS SWDs and correlating with the expression of a CaV 3.2 mutation-sensitive splice variant. In vivo knock-down of CaV 3.2 using direct thalamic injection of lipid nanoparticles containing CaV 3.2 dicer small interfering (Dsi) RNA normalized TRN burst-firing, and in free-moving GAERS significantly shortened seizures. SIGNIFICANCE: This supports a role for TRN CaV 3.2 T-type channels in propagating thalamocortical network seizures and setting the pacemaking frequency of SWDs.


Subject(s)
Action Potentials/physiology , Calcium Channels, T-Type/physiology , Epilepsy, Absence/physiopathology , Neurons/physiology , Seizures/physiopathology , Thalamus/physiopathology , Animals , Electroencephalography/methods , Epilepsy, Absence/genetics , Female , Male , Rats , Rats, Transgenic , Seizures/genetics
8.
eNeuro ; 5(6)2018.
Article in English | MEDLINE | ID: mdl-30627639

ABSTRACT

Microglia are dynamic immune cells of the central nervous system, and their morphology is commonly used as a readout of cellular function. However, current morphological analysis techniques rely on either tracing of cells or two-dimensional projection analysis, which are time-consuming, subject to bias, and may ignore important three-dimensional (3D) information. Therefore, we have created 3DMorph, a MATLAB-based script that analyzes microglial morphology from 3D data. The program initially requires input of threshold levels, cell size expectations, and preferred methods of skeletonization. This makes 3DMorph easily scalable and adaptable to different imaging parameters or cell types. After these settings are defined, the program is completely automatic and can batch process files without user input. Output data includes cell volume, territorial volume, branch length, number of endpoints and branch points, and average distance between cells. We show that 3DMorph is accurate compared to manual tracing, with significantly decreased user input time. Importantly, 3DMorph is capable of processing in vivo microglial morphology, as well as other 3D branching cell types, from mouse cranial windows or acute hippocampal slices. Therefore, we present a novel, user-friendly, scalable, and semiautomatic method of analyzing cell morphology in 3 dimensions. This method should improve the accuracy of cell measurements, remove user bias between conditions, increase reproducibility between experimenters and labs, and reduce user input time. We provide this open source code on GitHub so that it is free and accessible to all investigators.


Subject(s)
Brain/cytology , Electronic Data Processing/methods , Microglia/cytology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Brain/diagnostic imaging , Brain/drug effects , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cell Size , Excitatory Amino Acid Antagonists/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Imaging, Three-Dimensional , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Neurons/cytology , Neurons/drug effects , Rats , Reproducibility of Results , Sodium Channel Blockers/pharmacology , Software , Tetrodotoxin/pharmacology
9.
Neurophotonics ; 4(3): 035001, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28721356

ABSTRACT

Despite advances in experimental stroke models, confounding factors such as anesthetics used during stroke induction remain. Furthermore, imaging of blood flow during stroke is not routinely done. We take advantage of in vivo bihemispheric transcranial windows for longitudinal mesoscopic imaging of cortical function to establish a protocol for focal ischemic stroke induction in target brain regions using photothrombosis in awake head-fixed mice. Our protocol does not require any surgical steps at the time of stroke induction or anesthetics during either head fixation or photoactivation. In addition, we performed laser speckle contrast imaging and wide-field calcium imaging to reveal the effect of cortical spreading ischemic depolarization after stroke in both anesthetized and awake animals over a spatial scale encompassing both hemispheres. With our combined approach, we observed ischemic depolarizing waves (3 to [Formula: see text]) propagating across the cortex 1 to 5 min after stroke induction in genetically encoded calcium indicator mice. Measures of blood flow by laser speckle were correlated with neurological impairment and lesion volume, suggesting a metric for reducing experimental variability. The ability to follow brain dynamics immediately after stroke as well as during recovery may provide a valuable guide to develop activity-dependent therapeutic interventions to be performed shortly after stroke induction.

10.
Neurophotonics ; 4(3): 031210, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28560240

ABSTRACT

Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

11.
Elife ; 62017 02 04.
Article in English | MEDLINE | ID: mdl-28160463

ABSTRACT

Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Neurons/physiology , Thalamus/physiology , Anesthesia , Animals , Brain Mapping , Calcium/physiology , Calcium Signaling/physiology , Cerebral Cortex/anatomy & histology , Electrodes, Implanted , Male , Mice , Mice, Transgenic , Molecular Probes/chemistry , Molecular Probes/genetics , Nerve Net/anatomy & histology , Neurons/cytology , Optical Imaging/methods , Stereotaxic Techniques , Thalamus/anatomy & histology , Wakefulness/physiology
12.
J Neurosci ; 37(9): 2403-2414, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28137973

ABSTRACT

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3%-4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PgE2) plays a key role for cerebrovascular CO2 reactivity, and that preserved synthesis of glutathione is essential for the full development of this response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57BL/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca2+]i and stimulates COX-1 activity. The enzyme downstream of COX-1 that synthesizes PgE2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the level of glutathione in the brain. We show that, when glutathione levels are reduced, astrocyte calcium-evoked release of PgE2 is decreased and vasodilation triggered by increased astrocyte [Ca2+]iin vitro and by hypercapnia in vivo is inhibited. Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2 Reductions in glutathione levels in aging, stroke, or schizophrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage.SIGNIFICANCE STATEMENT Neuronal activity leads to the generation of CO2, which has previously been shown to evoke cerebral blood flow (CBF) increases via the release of the vasodilator PgE2 We demonstrate that hypercapnia (increased CO2) evokes increases in astrocyte calcium signaling, which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator PgE2 is critically dependent on brain levels of the antioxidant glutathione. These data suggest a novel role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that depleted glutathione levels, which occur in aging and stroke, will give rise to dysfunctional CBF regulation and may result in subsequent neuronal damage.


Subject(s)
Astrocytes/metabolism , Hippocampus/pathology , Hypercapnia/pathology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-Agonists/pharmacology , Animals , Animals, Newborn , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Cerebrovascular Circulation/drug effects , Clonidine/pharmacology , Cycloleucine/analogs & derivatives , Cycloleucine/pharmacology , Cyclooxygenase 1/metabolism , Dinoprostone/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Glutathione/metabolism , In Vitro Techniques , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Norepinephrine/pharmacology , Rats , Rats, Wistar , Vibrissae/innervation
13.
Neuron ; 91(5): 1052-1068, 2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27608760

ABSTRACT

Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism.


Subject(s)
Cell Adhesion Molecules, Neuronal/physiology , Cerebral Cortex/physiology , Cognition/physiology , GPI-Linked Proteins/physiology , Haploinsufficiency/physiology , Neural Cell Adhesion Molecules/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Cells, Cultured , Cerebral Cortex/metabolism , Disks Large Homolog 4 Protein , Excitatory Postsynaptic Potentials/physiology , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , Guanylate Kinases/metabolism , Hippocampus/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/physiology , Neural Cell Adhesion Molecules/biosynthesis , Neural Cell Adhesion Molecules/genetics , Receptors, AMPA/metabolism , Receptors, AMPA/physiology , Synapses/metabolism
14.
Glia ; 64(12): 2093-2103, 2016 12.
Article in English | MEDLINE | ID: mdl-27479868

ABSTRACT

Astrocytes display complex morphologies with an array of fine extensions extending from the soma and the primary thick processes. Until the use of genetically encoded calcium indicators (GECIs) selectively expressed in astrocytes, Ca2+ signaling was only examined in soma and thick primary processes of astrocytes where Ca2+ -sensitive fluorescent dyes could be imaged. GECI imaging in astrocytes revealed a previously unsuspected pattern of spontaneous Ca2+ transients in fine processes that has not been observed without chronic expression of GECIs, raising potential concerns about the effects of GECI expression. Here, we perform two-photon imaging of Ca2+ transients in adult CA1 hippocampal astrocytes using a new single-cell patch-loading strategy to image Ca2+ -sensitive fluorescent dyes in the cytoplasm of fine processes. We observed that astrocyte fine processes exhibited a high frequency of spontaneous Ca2+ transients whereas astrocyte soma rarely showed spontaneous Ca2+ oscillations similar to previous reports using GECIs. We exploited this new approach to show these signals were independent of neuronal spiking, metabotropic glutamate receptor (mGluR) activity, TRPA1 channels, and L- or T-type voltage-gated calcium channels. Removal of extracellular Ca2+ almost completely and reversibly abolished the spontaneous signals while IP3 R2 KO mice also exhibited spontaneous and compartmentalized signals, suggesting they rely on influx of extracellular Ca2+ . The Ca2+ influx dependency of the spontaneous signals in patch-loaded astrocytes was also observed in astrocytes expressing GCaMP3, further highlighting the presence of Ca2+ influx pathways in astrocytes. The mechanisms underlying these localized Ca2+ signals are critical for understanding how astrocytes regulate important functions in the adult brain. GLIA 2016;64:2093-2103.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Hippocampus/cytology , Action Potentials/drug effects , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Carbenoxolone/pharmacology , Chromones/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Female , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyridines/pharmacology , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism
15.
Nat Commun ; 6: 7738, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26190168

ABSTRACT

Neuroimaging of spontaneous, resting-state infraslow (<0.1 Hz) brain activity has been used to reveal the regional functional organization of the brain and may lead to the identification of novel biomarkers of neurological disease. However, these imaging studies generally rely on indirect measures of neuronal activity and the nature of the neuronal activity correlate remains unclear. Here we show, using wide-field, voltage-sensitive dye imaging, the mesoscale spatiotemporal structure and pharmacological dependence of spontaneous, infraslow cortical activity in anaesthetized and awake mice. Spontaneous infraslow activity is regionally distinct, correlates with electroencephalography and local field potential recordings, and shows bilateral symmetry between cortical hemispheres. Infraslow activity is attenuated and its functional structure abolished after treatment with voltage-gated sodium channel and glutamate receptor antagonists. Correlation analysis reveals patterns of infraslow regional connectivity that are analogous to cortical motifs observed from higher-frequency spontaneous activity and reflect the underlying framework of intracortical axonal projections.


Subject(s)
Brain Waves/physiology , Cerebral Cortex/physiology , Membrane Potentials/physiology , Voltage-Sensitive Dye Imaging , Animals , Axons , Brain Mapping , Brain Waves/drug effects , Cerebral Cortex/drug effects , Electroencephalography , Excitatory Amino Acid Antagonists/pharmacology , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Physical Stimulation , Spatio-Temporal Analysis , Voltage-Gated Sodium Channel Blockers/pharmacology , Wakefulness/drug effects , Wakefulness/physiology
16.
Neurophotonics ; 2(4): 041405, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26158019

ABSTRACT

With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

17.
J Cereb Blood Flow Metab ; 35(10): 1579-86, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26082013

ABSTRACT

We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.


Subject(s)
Cerebrovascular Circulation/physiology , GABAergic Neurons/physiology , Optogenetics/methods , gamma-Aminobutyric Acid/physiology , Animals , Cerebrovascular Circulation/drug effects , Channelrhodopsins , Dizocilpine Maleate/pharmacology , Electroencephalography , Excitatory Amino Acid Antagonists/pharmacology , Female , GABA Antagonists/pharmacology , GABAergic Neurons/drug effects , Interneurons/drug effects , Lasers , Male , Mice , Photic Stimulation , Quinoxalines/pharmacology
18.
J Neurosci ; 34(49): 16455-66, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25471583

ABSTRACT

We used arbitrary point channelrhodopsin-2 (ChR2) stimulation and wide-scale voltage sensitive dye (VSD) imaging in mice to map altered cortical connectivity at 1 and 8 weeks after a targeted cortical stroke. Network analysis based on optogenetic stimulation revealed a symmetrical sham network with distinct sensorimotor and association groupings. This symmetry was disrupted after stroke: at 1 week after stroke, we observed a widespread depression of optogenetically evoked activity that extended to the non-injured hemisphere; by 8 weeks, significant recovery was observed. When we considered the network as a whole, scaling the ChR2-evoked VSD responses from the stroke groups to match the sham group mean resulted in a relative distribution of responses that was indistinguishable from the sham group, suggesting network-wide down-scaling and connectional diaschisis after stroke. Closer inspection revealed that connections that had little connectivity with the peri-infarct, such as contralateral visual areas, tended to escape damage, whereas some connections near the peri-infarct were more severely affected. When connections within the peri-infarct were isolated, we did not observe equal down-scaling of responses after stroke. Peri-infarct sites that had weak connection strength in the sham condition tended to have the greatest relative post-stroke recovery. Our findings suggest that, during recovery, most cortical areas undergo homeostatic upscaling, resulting in a relative distribution of responses that is similar to the pre-stroke (sham) network, albeit still depressed. However, recovery within the peri-infarct zone is heterogeneous and these cortical points do not follow the recovery scaling factor expected for the entire network.


Subject(s)
Cerebral Cortex/physiology , Cerebral Infarction/physiopathology , Neuronal Plasticity/physiology , Optogenetics , Recovery of Function/physiology , Animals , Brain Mapping , Male , Mice , Neural Pathways/physiology , Photic Stimulation
19.
F1000Res ; 3: 162, 2014.
Article in English | MEDLINE | ID: mdl-25254108

ABSTRACT

Micro-damage of bone tissue is known to regulate bone turnover. However, it is unknown if individual bone cells can differentiate between membrane deformation and micro-injury. We generated osteoblasts from mouse bone marrow or bone morphogenetic protein 2-transfected C2C12 cells. Single cells were mechanically stimulated by indentation with the atomic force microscopy probe with variable force load either resulting in membrane deformation only, or leading to membrane penetration and micro-injury. Changes in the cytosolic free calcium concentration ([Ca (2+)] i) in fluo4-AM loaded cells were analyzed. When deformation only was induced, it resulted in an immediate elevation of [Ca (2+)] i which was localized to the probe periphery. Multiple consecutive local Ca (2+) responses were induced by sequential application of low level forces, with characteristic recovery time of ~2 s. The duration of [Ca (2+)] i elevations was directly proportional to the tip-cell contact time. In contrast, cell micro-injury resulted in transient global elevations of [Ca (2+)] i, the magnitude of which was independent of the tip-cell contact time. Sequential micro-injury of the same cell did not induce Ca (2+) response within 30 s of the first stimulation. Both local and global Ca (2+)elevations were blocked in Ca (2+)-free media or in the presence of stretch-activated channel blocker Gd (3+). In addition, amount of Ca (2+) released during global responses was significantly reduced in the presence of PLC inhibitor Et-18-OCH 3. Thus, we found qualitative differences in calcium responses to mechanical forces inducing only membrane deformation or deformation leading to micro-injury.

20.
J Neurosci ; 34(32): 10511-27, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25100586

ABSTRACT

Microglia are morphologically dynamic cells that rapidly extend their processes in response to various stimuli including extracellular ATP. In this study, we tested the hypothesis that stimulation of neuronal NMDARs trigger ATP release leading to communication with microglia. We used acute mouse hippocampal brain slices and two-photon laser scanning microscopy to study microglial dynamics and developed a novel protocol for fixation and immunolabeling of microglia processes. Similar to direct topical ATP application in vivo, short multiple applications of NMDA triggered transient microglia process outgrowth that was reversible and repeatable indicating that this was not due to excitotoxic damage. Stimulation of NMDAR was required as NMDAR antagonists, but not blockers of AMPA/kainate receptors or voltage-gated sodium channels, prevented microglial outgrowth. We report that ATP release, secondary to NMDAR activation, was the key mediator of this neuron-microglia communication as both blocking purinergic receptors and inhibiting hydrolysis of ATP to prevent locally generated gradients abolished outgrowth. Pharmacological and genetic analyses showed that the NMDA-triggered microglia process extension was independent of Pannexin 1, the ATP releasing channels, ATP release from astrocytes via connexins, and nitric oxide generation. Finally, using whole-cell patch clamping we demonstrate that activation of dendritic NMDAR on single neurons is sufficient to trigger microglia process outgrowth. Our results suggest that dendritic neuronal NMDAR activation triggers ATP release via a Pannexin 1-independent manner that induces outgrowth of microglia processes. This represents a novel uncharacterized form of neuron-microglial communication mediated by ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Brain/cytology , Microglia/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/drug effects , Calcium-Binding Proteins/metabolism , Cell Growth Processes/drug effects , Cell Growth Processes/genetics , Excitatory Amino Acid Agents/pharmacology , Female , In Vitro Techniques , Magnesium/pharmacology , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/cytology , N-Methylaspartate/pharmacology , Neurons/drug effects , Patch-Clamp Techniques , Receptors, Purinergic P2Y12/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...