Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 156: 111202, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32510422

ABSTRACT

This study investigated the sensitivity of two deepsea species using mortality of northern shrimp (Pandalus borealis) and polyp activity of stony coral (Lophelia pertusa) to dispersant, Corexit 9500 and aromatic hydrocarbons (toluene, 2-methylnaphthalene, phenanthrene) in 96-h tests. Resulting hydrocarbon toxicity data were fit to the Target Lipid Model to generate predictive models and determine species sensitivity. Toxicity of chemically enhanced water accommodated fractions of Alaskan North Slope crude oil (ANS-oil) was also investigated with shrimp using nominal loading, total petroleum hydrocarbons and biomimetic extraction (BE) as oil exposure metrics. Coral were more sensitive to dispersant than shrimp while similar sensitivity was observed for hydrocarbons. Study and literature findings indicate deepsea species exhibit acute sensitivities to dispersant, hydrocarbons and oil that are comparable to pelagic species. Results support use of passive sampling methods to quantify dissolved oil for interpreting oil toxicity tests and suggest models for predicting time-dependence of toxicity warrant re-evaluation.


Subject(s)
Anthozoa , Pandalidae , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals
2.
Environ Toxicol Chem ; 37(8): 2210-2221, 2018 08.
Article in English | MEDLINE | ID: mdl-29729028

ABSTRACT

A predominant concern following oil spills is toxicity to aquatic organisms. However, few data are available on effects in deep-sea cold water fishes. The present study had 3 major objectives. The first was to investigate the relative sensitivity of the deep-sea species Anoplopoma fimbria (sablefish) to acute effects of 3 aromatic compounds (toluene, 2-methylnaphthalene, and phenanthrene), dispersant alone, and chemically enhanced water accommodated fractions (CEWAFs) of Alaskan North Slope crude oil. The second was to determine the critical target lipid body burden (CTLBB) for sablefish by fitting aromatic hydrocarbon toxicity data to the target lipid model (TLM), which then allowed expression of CEWAF exposures in terms of dissolved oil toxic units. The final aim was to apply a passive sampling method that targets bioavailable, dissolved hydrocarbons as an alternative analytical technique for improved CEWAF exposure assessment. The results indicate that sablefish exhibit sensitivity to Corexit 9500 (96-h median lethal concentration [LC50] = 72.2 mg/L) within the range reported for other fish species. However, the acute CTLBB of 39.4 ± 2.1 µmol/goctanol lies at the lower end of the sensitivity range established for aquatic species. The utility of both toxic units and passive sampling measurements for describing observed toxicity of dispersed oil is discussed. The present study is novel in that a new test species is investigated to address the uncertainty regarding the sensitivity of deep-sea fishes, while also employing modeling and measurements to improve exposure characterization in oil toxicity tests. Environ Toxicol Chem 2018;37:2210-2221. © 2018 SETAC.


Subject(s)
Hydrocarbons, Aromatic/toxicity , Perciformes/physiology , Petroleum/toxicity , Alaska , Animals , Lipids/toxicity , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...