Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 35(Database issue): D786-93, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17145717

ABSTRACT

The Database of Protein Disorder (DisProt) links structure and function information for intrinsically disordered proteins (IDPs). Intrinsically disordered proteins do not form a fixed three-dimensional structure under physiological conditions, either in their entireties or in segments or regions. We define IDP as a protein that contains at least one experimentally determined disordered region. Although lacking fixed structure, IDPs and regions carry out important biological functions, being typically involved in regulation, signaling and control. Such functions can involve high-specificity low-affinity interactions, the multiple binding of one protein to many partners and the multiple binding of many proteins to one partner. These three features are all enabled and enhanced by protein intrinsic disorder. One of the major hindrances in the study of IDPs has been the lack of organized information. DisProt was developed to enable IDP research by collecting and organizing knowledge regarding the experimental characterization and the functional associations of IDPs. In addition to being a unique source of biological information, DisProt opens doors for a plethora of bioinformatics studies. DisProt is openly available at http://www.disprot.org.


Subject(s)
Databases, Protein , Protein Conformation , Internet , Protein Folding , Proteins/physiology , User-Computer Interface
2.
Trends Biotechnol ; 24(10): 435-42, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16876893

ABSTRACT

Despite substantial increases in research funding by the pharmaceutical industry, drug discovery rates seem to have reached a plateau or perhaps are even declining, suggesting the need for new strategies. Protein-protein interactions have long been thought to provide interesting drug discovery targets, but the development of small molecules that modulate such interactions has so far achieved a low success rate. In contrast to this historic trend, a few recent successes raise hopes for routinely identifying druggable protein-protein interactions. In this Opinion article, we point out the importance of coupled binding and folding for protein-protein signalling interactions generally, and from this and associated observations, we develop a new strategy for identifying protein-protein interactions that would be particularly promising targets for modulation by small molecules. This novel strategy, based on intrinsically disordered protein, has the potential to increase significantly the discovery rate for new molecule entities.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Design , Protein Conformation , Protein Interaction Mapping/methods , Signal Transduction/physiology , Humans , Protein Binding , Structure-Activity Relationship , Tumor Suppressor Protein p53/genetics
3.
Biochemistry ; 45(35): 10448-60, 2006 Sep 05.
Article in English | MEDLINE | ID: mdl-16939197

ABSTRACT

Evidence that many protein regions and even entire proteins lacking stable tertiary and/or secondary structure in solution (i.e., intrinsically disordered proteins) might be involved in protein-protein interactions, regulation, recognition, and signal transduction is rapidly accumulating. These signaling proteins play a crucial role in the development of several pathological conditions, including cancer. To test a hypothesis that intrinsic disorder is also abundant in cardiovascular disease (CVD), a data set of 487 CVD-related proteins was extracted from SWISS-PROT. CVD-related proteins are depleted in major order-promoting residues (Trp, Phe, Tyr, Ile, and Val) and enriched in some disorder-promoting residues (Arg, Gln, Ser, Pro, and Glu). The application of a neural network predictor of natural disordered regions (PONDR VL-XT) together with cumulative distribution function (CDF) analysis, charge-hydropathy plot (CH plot) analysis, and alpha-helical molecular recognition feature (alpha-MoRF) indicator revealed that CVD-related proteins are enriched in intrinsic disorder. In fact, the percentage of proteins with 30 or more consecutive residues predicted by PONDR VL-XT to be disordered was 57 +/- 4% for CVD-associated proteins. This value is close that described earlier for signaling proteins (66 +/- 6%) and is significantly larger than the content of intrinsic disorder in eukaryotic proteins from SWISS-PROT (47 +/- 4%) and in nonhomologous protein segments with a well-defined three-dimensional structure (13 +/- 4%). Furthermore, CDF and CH-plot analyses revealed that 120 and 36 CVD-related proteins, respectively, are wholly disordered. This high level of intrinsic disorder could be important for the function of CVD-related proteins and for the control and regulation of processes associated with cardiovascular disease. In agreement with this hypothesis, 198 alpha-MoRFs were predicted in 101 proteins from the CVD data set. A comparison of disorder predictions with the experimental structural and functional data for a subset of the CVD-associated proteins indicated good agreement between predictions and observations. Thus, our data suggest that intrinsically disordered proteins might play key roles in cardiovascular disease.


Subject(s)
Cardiovascular Diseases/metabolism , Proteins/chemistry , 3',5'-Cyclic-AMP Phosphodiesterases/chemistry , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Computer Simulation , Cyclic Nucleotide Phosphodiesterases, Type 4 , Databases, Protein , Fibrinogen/chemistry , Fibrinogen/genetics , Hirudins/pharmacology , Humans , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Sequence Analysis, Protein , Structure-Activity Relationship , Thrombin/metabolism
4.
Proc Natl Acad Sci U S A ; 103(22): 8390-5, 2006 May 30.
Article in English | MEDLINE | ID: mdl-16717195

ABSTRACT

Alternative splicing of pre-mRNA generates two or more protein isoforms from a single gene, thereby contributing to protein diversity. Despite intensive efforts, an understanding of the protein structure-function implications of alternative splicing is still lacking. Intrinsic disorder, which is a lack of equilibrium 3D structure under physiological conditions, may provide this understanding. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. We hypothesize that polypeptide segments affected by alternative splicing are most often intrinsically disordered such that alternative splicing enables functional and regulatory diversity while avoiding structural complications. We analyzed a set of 46 differentially spliced genes encoding experimentally characterized human proteins containing both structured and intrinsically disordered amino acid segments. We show that 81% of 75 alternatively spliced fragments in these proteins were associated with fully (57%) or partially (24%) disordered protein regions. Regions affected by alternative splicing were significantly biased toward encoding disordered residues, with a vanishingly small P value. A larger data set composed of 558 SwissProt proteins with known isoforms produced by 1,266 alternatively spliced fragments was characterized by applying the pondr vsl1 disorder predictor. Results from prediction data are consistent with those obtained from experimental data, further supporting the proposed hypothesis. Associating alternative splicing with protein disorder enables the time- and tissue-specific modulation of protein function needed for cell differentiation and the evolution of multicellular organisms.


Subject(s)
Alternative Splicing , Proteins/genetics , Proteins/metabolism , Animals , Humans , Models, Molecular , Protein Conformation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteins/chemistry , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...