Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys J ; 114(4): 929-938, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29490252

ABSTRACT

Regulation of cell volume is a fundamental property of all mammalian cells. Multiple signaling pathways are known to be activated by cell swelling and to contribute to cell volume homeostasis. Although cell mechanics and membrane tension have been proposed to couple cell swelling to signaling pathways, the impact of swelling on cellular biomechanics and membrane tension have yet to be fully elucidated. In this study, we use atomic force microscopy under isotonic and hypotonic conditions to measure mechanical properties of endothelial membranes including membrane stiffness, which reflects the stiffness of the submembrane cytoskeleton complex, and the force required for membrane tether formation, reflecting membrane tension and membrane-cytoskeleton attachment. We find that hypotonic swelling results in significant stiffening of the endothelial membrane without a change in membrane tension/membrane-cytoskeleton attachment. Furthermore, depolymerization of F-actin, which, as expected, results in a dramatic decrease in the cellular elastic modulus of both the membrane and the deeper cytoskeleton, indicating a collapse of the cytoskeleton scaffold, does not abrogate swelling-induced stiffening of the membrane. Instead, this swelling-induced stiffening of the membrane is enhanced. We propose that the membrane stiffening should be attributed to an increase in hydrostatic pressure that results from an influx of solutes and water into the cells. Most importantly, our results suggest that increased hydrostatic pressure, rather than changes in membrane tension, could be responsible for activating volume-sensitive mechanisms in hypotonically swollen cells.


Subject(s)
Actin Cytoskeleton/metabolism , Aorta/metabolism , Cell Membrane/chemistry , Elastic Modulus , Endothelium, Vascular/metabolism , Hypotonic Solutions/pharmacology , Stress, Mechanical , Actins/metabolism , Aorta/cytology , Aorta/drug effects , Cell Size , Cells, Cultured , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Humans , Osmolar Concentration
2.
Biophys J ; 112(2): 325-338, 2017 Jan 24.
Article in English | MEDLINE | ID: mdl-28122218

ABSTRACT

The influence of two bioactive oxidized phospholipids on model bilayer properties, membrane packing, and endothelial cell biomechanics was investigated computationally and experimentally. The truncated tail phospholipids, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), are two major oxidation products of the unsaturated phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine. A combination of coarse-grained molecular dynamics simulations, Laurdan multiphoton imaging, and atomic force microscopy microindentation experiments was used to determine the impact of POVPC and PGPC on the structure of a multicomponent phospholipid bilayer and to assess the consequences of their incorporation on membrane packing and endothelial cell stiffness. Molecular simulations predicted differential bilayer perturbation effects of the two oxidized phospholipids based on the chemical identities of their truncated tails, including decreased bilayer packing, decreased bilayer bending modulus, and increased water penetration. Disruption of lipid order was consistent with Laurdan imaging results indicating that POVPC and PGPC decrease the lipid packing of both ordered and disordered membrane domains. Computational predictions of a larger membrane perturbation effect by PGPC correspond to greater stiffness of PGPC-treated endothelial cells observed by measuring cellular elastic moduli using atomic force microscopy. Our results suggest that disruptions in membrane structure by oxidized phospholipids play a role in the regulation of overall endothelial cell stiffness.


Subject(s)
Cell Membrane/drug effects , Cell Membrane/metabolism , Endothelial Cells/cytology , Mechanical Phenomena/drug effects , Phospholipid Ethers/pharmacology , Animals , Biomechanical Phenomena/drug effects , Cattle , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Molecular Conformation , Molecular Dynamics Simulation , Phospholipid Ethers/chemistry
3.
J Lipid Res ; 57(5): 791-808, 2016 05.
Article in English | MEDLINE | ID: mdl-26989083

ABSTRACT

Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity.


Subject(s)
Endothelial Cells/pathology , Lipoproteins, LDL/physiology , Neovascularization, Pathologic/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cardiac Myosins/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Mice, Nude , Mice, SCID , Myosin Light Chains/metabolism , Signal Transduction , Vascular Stiffness , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...