Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32109056

ABSTRACT

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Antigen Presentation/drug effects , Diterpenes, Clerodane/pharmacology , Epitopes/metabolism , Peptides/metabolism , Protease Inhibitors/pharmacology , Allosteric Site , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/metabolism , Enzyme Activators/chemistry , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , Epitopes/chemistry , HeLa Cells , Humans , Mice , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Peptides/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , Proteolysis/drug effects
2.
BMJ Open ; 8(4): e020061, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703854

ABSTRACT

OBJECTIVE: To obtain pilot data to evaluate the discriminatory power of biomarkers microRNA-122 (miR-122), high-mobility group box 1 (HMGB1), full-length keratin-18 (flk-18) and caspase-cleaved keratin-18 (cck-18) in plasma to identify potential biliary complications that may require acute intervention. DESIGN: An observational biomarker cohort pilot study. SETTING: In a Scottish University teaching hospital for 12 months beginning on 3 September 2014. PARTICIPANTS: Blood samples were collected from adults (≥16 years old) referred with acute biliary-type symptoms who have presented to hospital within 24 hours prior were recruited. Patients unable or refused to give informed consent or were transferred from a hospital outside the National Health Service regional trust were excluded. PRIMARY OUTCOME MEASURES: To evaluate whether circulating miR-122, HMGB1, flk-18 and cck-18 can discriminate between people with and without gallstone disease and uncomplicated from complicated gallstone disease during the first 24 hours of hospital admission. RESULTS: 300 patients were screened of which 285 patients were included. Plasma miR-122, cck-18 and flk-18 concentrations were increased in patients with gallstones compared with those without (miR-122: median: 2.89×104 copies/mL vs 0.90×104 copies/mL (p<0.001); cck-18: 121.2 U/L vs 103.5 U/L (p=0.031); flk-18: 252.4 U/L vs 145.1 U/L (p<0.001)). Uncomplicated gallstone disease was associated with higher miR-122 and cck-18 concentrations than complicated disease (miR-122: 5.72×104 copies/mL vs 2.26×104 copies/mL (p=0.023); cck-18: 139.7 U/L vs 113.6 U/L (p=0.047)). There was no significant difference in HMGB1 concentration between patients with and without gallstones (p=0.559). Separation between groups for all biomarkers was modest. CONCLUSION: miR-122 and keratin-18 plasma concentrations are elevated in patients with gallstones. However, this result is confounded by the association between biomarker concentrations, age and gender. In this pilot study, miR-122 and keratin-18 were not sufficiently discriminatory to be progressed as clinically useful biomarkers in this context.


Subject(s)
Biomarkers , Gallstones , Adolescent , Adult , Biomarkers/blood , Cohort Studies , Female , Gallstones/blood , Gallstones/diagnosis , HMGB1 Protein/blood , Humans , Keratin-18/blood , Male , MicroRNAs/blood , Pilot Projects , Quality of Life
3.
Toxicol Res (Camb) ; 6(4): 406-411, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30090508

ABSTRACT

microRNA-122 (miR-122) is increasingly being measured in pre-clinical and clinical settings due to greater sensitivity and hepatic specificity compared to the gold standard liver injury biomarker alanine aminotransferase (ALT). In pre-clinical studies, various culling methods can be employed prior to collection of blood samples, including lethal injection with pentobarbital sodium (Pentoject). However, little is known about whether such an approach could alter the circulating levels of miR-122 and compromise the interpretation of data. We therefore exposed C57BL/6J mice to saline or the model hepatotoxin paracetamol and collected blood samples pre-cull (via tail bleed) and post-cull (via cardiac puncture following exposure to a rising concentration of CO2 or intraperitoneal injection of Pentoject). Compared to pre-cull levels there was a significant increase in serum miR-122 level in mice culled with CO2 and, to a much greater extent, in mice culled with Pentoject. As a result, whilst the serum level of miR-122 increased in Pentoject-culled animals exposed to paracetamol, the higher level in saline-treated mice rendered this difference statistically non-significant, in contrast to findings in animals culled with CO2. ALT levels were unaffected by sacrifice method. Consistent with the in vivo findings, exposure of primary mouse hepatocytes to Pentoject provoked a rapid and concentration-dependent release of miR-122 into the culture media. Thus, for optimal design and interpretation of data from pre-clinical liver injury studies in which miR-122 is to be used as a biomarker, we recommend that blood samples are collected pre-cull whenever possible, and that lethal injection with Pentoject is avoided.

4.
Hepatology ; 64(5): 1699-1710, 2016 11.
Article in English | MEDLINE | ID: mdl-27474782

ABSTRACT

Acetaminophen (APAP) overdoses are of major clinical concern. Growing evidence underlines a pathogenic contribution of sterile postinjury inflammation in APAP-induced acute liver injury (APAP-ALI) and justifies development of anti-inflammatory therapies with therapeutic efficacy beyond the therapeutic window of the only current treatment option, N-acetylcysteine (NAC). The inflammatory mediator, high mobility group box 1 (HMGB1), is a key regulator of a range of liver injury conditions and is elevated in clinical and preclinical APAP-ALI. The anti-HMGB1 antibody (m2G7) is therapeutically beneficial in multiple inflammatory conditions, and anti-HMGB1 polyclonal antibody treatment improves survival in a model of APAP-ALI. Herein, we developed and investigated the therapeutic efficacy of a partly humanized anti-HMGB1 monoclonal antibody (mAb; h2G7) and identified its mechanism of action in preclinical APAP-ALI. The mouse anti-HMGB1 mAb (m2G7) was partly humanized (h2G7) by merging variable domains of m2G7 with human antibody-Fc backbones. Effector function-deficient variants of h2G7 were assessed in comparison with h2G7 in vitro and in preclinical APAP-ALI. h2G7 retained identical antigen specificity and comparable affinity as m2G7. 2G7 treatments significantly attenuated APAP-induced serum elevations of alanine aminotransferase and microRNA-122 and completely abrogated markers of APAP-induced inflammation (tumor necrosis factor, monocyte chemoattractant protein 1, and chemokine [C-X-C motif] ligand 1) with prolonged therapeutic efficacy as compared to NAC. Removal of complement and/or Fc receptor binding did not affect h2G7 efficacy. CONCLUSION: This is the first report describing the generation of a partly humanized HMGB1-neutralizing antibody with validated therapeutic efficacy and with a prolonged therapeutic window, as compared to NAC, in APAP-ALI. The therapeutic effect was mediated by HMGB1 neutralization and attenuation of postinjury inflammation. These results represent important progress toward clinical implementation of HMGB1-specific therapy as a means to treat APAP-ALI and other inflammatory conditions. (Hepatology 2016;64:1699-1710).


Subject(s)
Antibodies, Neutralizing/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , HMGB1 Protein/therapeutic use , Inflammation/drug therapy , Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Animals , Antipyretics/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Male , Mice , Mice, Inbred C57BL
5.
Antioxid Redox Signal ; 24(12): 652-65, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26481429

ABSTRACT

SIGNIFICANCE: High-mobility group box 1 (HMGB1) is a critical protein in the coordination of the inflammatory response in drug-induced liver injury (DILI). HMGB1 is released from necrotic hepatocytes and activated immune cells. The extracellular function of HMGB1 is dependent upon redox modification of cysteine residues that control chemoattractant and cytokine-inducing properties. Existing biomarkers of DILI such as alanine aminotransferase (ALT) have limitations such as lack of sensitivity and tissue specificity that can adversely affect clinical intervention. RECENT ADVANCES: HMGB1 isoforms have been shown to be more sensitive biomarkers than ALT for predicting DILI development and the requirement for liver transplant following acetaminophen (APAP) overdose. Hepatocyte-specific conditional knockout of HMGB1 has demonstrated the pivotal role of HMGB1 in DILI and liver disease. Tandem mass spectrometry (MS/MS) enables the characterization and quantification of different mechanism-dependent post-translationally modified isoforms of HMGB1. CRITICAL ISSUES: HMGB1 shows great promise as a biomarker of DILI. However, current diagnostic assays are either too time-consuming to be clinically applicable (MS/MS) or are unable to distinguish between different redox and acetyl isoforms of HMGB1 (ELISA). Additionally, HMGB1 is not liver specific, so while it outperforms ALT (also not liver specific) as a biomarker for the prediction of DILI development, it should be used in a biomarker panel along with liver-specific markers such as miR-122. FUTURE DIRECTIONS: A point-of-care test for HMGB1 and the development of redox and acetyl isoform-targeting antibodies will advance clinical utility. Work is ongoing to validate baseline levels of circulating HMGB1 in healthy volunteers.


Subject(s)
Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/metabolism , HMGB1 Protein/chemistry , HMGB1 Protein/metabolism , Biomarkers/analysis , Biomarkers/metabolism , HMGB1 Protein/analysis , Humans , MicroRNAs/analysis , MicroRNAs/metabolism , Oxidation-Reduction , Point-of-Care Testing , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...