Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Neurosci ; 27(2): 373-383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38212587

ABSTRACT

Rabies-virus-based monosynaptic tracing is a widely used technique for mapping neural circuitry, but its cytotoxicity has confined it primarily to anatomical applications. Here we present a second-generation system for labeling direct inputs to targeted neuronal populations with minimal toxicity, using double-deletion-mutant rabies viruses. Viral spread requires expression of both deleted viral genes in trans in postsynaptic source cells. Suppressing this expression with doxycycline following an initial period of viral replication reduces toxicity to postsynaptic cells. Longitudinal two-photon imaging in vivo indicated that over 90% of both presynaptic and source cells survived for the full 12-week course of imaging. Ex vivo whole-cell recordings at 5 weeks postinfection showed that the second-generation system perturbs input and source cells much less than the first-generation system. Finally, two-photon calcium imaging of labeled networks of visual cortex neurons showed that their visual response properties appeared normal for 10 weeks, the longest we followed them.


Subject(s)
Rabies virus , Rabies virus/genetics , Neurons/physiology , Virus Replication
3.
Cell Rep Methods ; 3(11): 100644, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37989085

ABSTRACT

Rabies viral vectors have become important components of the systems neuroscience toolkit, allowing both direct retrograde targeting of projection neurons and monosynaptic tracing of inputs to defined postsynaptic populations, but the rapid cytotoxicity of first-generation (ΔG) vectors limits their use to short-term experiments. We recently introduced second-generation, double-deletion-mutant (ΔGL) rabies viral vectors, showing that they efficiently retrogradely infect projection neurons and express recombinases effectively but with little to no detectable toxicity; more recently, we have shown that ΔGL viruses can be used for monosynaptic tracing with far lower cytotoxicity than the first-generation system. Here, we introduce third-generation (ΔL) rabies viral vectors, which appear to be as nontoxic as second-generation ones but have the major advantage of growing to much higher titers, resulting in significantly increased numbers of retrogradely labeled neurons in vivo.


Subject(s)
Rabies virus , Rabies , Humans , Rabies virus/genetics , Interneurons , Genetic Vectors/genetics , Neurons
4.
Proc Natl Acad Sci U S A ; 120(7): e2023481120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-37053554

ABSTRACT

Monosynaptic tracing using rabies virus is an important technique in neuroscience, allowing brain-wide labeling of neurons directly presynaptic to a targeted neuronal population. A 2017 article reported the development of a noncytotoxic version-a major advance-based on attenuating the rabies virus by the addition of a destabilization domain to the C terminus of a viral protein. However, this modification did not appear to hinder the ability of the virus to spread between neurons. We analyzed two viruses provided by the authors and show here that both were mutants that had lost the intended modification, explaining the paper's paradoxical results. We then made a virus that actually did have the intended modification in at least the majority of virions and found that it did not spread efficiently under the conditions described in the original paper, namely, without an exogenous protease being expressed in order to remove the destabilization domain. We found that it did spread when the protease was supplied, although this also appeared to result in the deaths of most source cells by 3 wk postinjection. We conclude that the new approach is not robust but that it could become a viable technique given further optimization and validation.


Subject(s)
Rabies virus , Rabies , Humans , Rabies virus/metabolism , Neurons/metabolism , Viral Proteins/metabolism , Brain/metabolism , Peptide Hydrolases/metabolism
5.
Nature ; 607(7918): 321-329, 2022 07.
Article in English | MEDLINE | ID: mdl-35676479

ABSTRACT

Although bradykinesia, tremor and rigidity are the hallmark motor defects in patients with Parkinson's disease (PD), patients also experience motor learning impairments and non-motor symptoms such as depression1. The neural circuit basis for these different symptoms of PD are not well understood. Although current treatments are effective for locomotion deficits in PD2,3, therapeutic strategies targeting motor learning deficits and non-motor symptoms are lacking4-6. Here we found that distinct parafascicular (PF) thalamic subpopulations project to caudate putamen (CPu), subthalamic nucleus (STN) and nucleus accumbens (NAc). Whereas PF→CPu and PF→STN circuits are critical for locomotion and motor learning, respectively, inhibition of the PF→NAc circuit induced a depression-like state. Whereas chemogenetically manipulating CPu-projecting PF neurons led to a long-term restoration of locomotion, optogenetic long-term potentiation (LTP) at PF→STN synapses restored motor learning behaviour in an acute mouse model of PD. Furthermore, activation of NAc-projecting PF neurons rescued depression-like phenotypes. Further, we identified nicotinic acetylcholine receptors capable of modulating PF circuits to rescue different PD phenotypes. Thus, targeting PF thalamic circuits may be an effective strategy for treating motor and non-motor deficits in PD.


Subject(s)
Affect , Motor Skills , Neural Pathways , Parkinson Disease , Thalamus , Animals , Disease Models, Animal , Learning , Locomotion , Long-Term Potentiation , Mice , Neurons/physiology , Nucleus Accumbens , Optogenetics , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Parkinson Disease/therapy , Putamen , Receptors, Nicotinic , Subthalamic Nucleus , Synapses , Thalamus/cytology , Thalamus/pathology
6.
Neuron ; 109(16): 2590-2603.e13, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34197733

ABSTRACT

Neuropsychiatric disorders are often accompanied by cognitive impairments/intellectual disability (ID). It is not clear whether there are converging mechanisms underlying these debilitating impairments. We found that many autism and schizophrenia risk genes are expressed in the anterodorsal subdivision (AD) of anterior thalamic nuclei, which has reciprocal connectivity with learning and memory structures. CRISPR-Cas9 knockdown of multiple risk genes selectively in AD thalamus led to memory deficits. While the AD is necessary for contextual memory encoding, the neighboring anteroventral subdivision (AV) regulates memory specificity. These distinct functions of AD and AV are mediated through their projections to retrosplenial cortex, using differential mechanisms. Furthermore, knockdown of autism and schizophrenia risk genes PTCHD1, YWHAG, or HERC1 from AD led to neuronal hyperexcitability, and normalization of hyperexcitability rescued memory deficits in these models. This study identifies converging cellular to circuit mechanisms underlying cognitive deficits in a subset of neuropsychiatric disease models.


Subject(s)
Anterior Thalamic Nuclei/physiopathology , Cognitive Dysfunction/physiopathology , Neural Pathways/physiopathology , Thalamic Nuclei/physiopathology , Animals , Anterior Thalamic Nuclei/physiology , Cerebral Cortex/physiopathology , Cognition/physiology , Mice , Neural Pathways/physiology , Thalamic Nuclei/physiology
7.
Article in English | MEDLINE | ID: mdl-32116642

ABSTRACT

Monosynaptically-restricted transsynaptic tracing using deletion-mutant rabies virus (RV) has become a widely used technique in neuroscience, allowing identification, imaging, and manipulation of neurons directly presynaptic to a starting neuronal population. Its most common implementation is to use Cre mouse lines in combination with Cre-dependent "helper" adeno-associated viral vectors (AAVs) to supply the required genes to the targeted population before subsequent injection of a first-generation (ΔG) rabies viral vector. Here we show that the efficiency of transsynaptic spread and the degree of nonspecific labeling in wild-type control animals depend strongly on the concentrations of these helper AAVs. Our results suggest practical guidelines for achieving good results.

8.
Nat Neurosci ; 21(4): 638-646, 2018 04.
Article in English | MEDLINE | ID: mdl-29507411

ABSTRACT

Recombinant rabies viral vectors have proven useful for applications including retrograde targeting of projection neurons and monosynaptic tracing, but their cytotoxicity has limited their use to short-term experiments. Here we introduce a new class of double-deletion-mutant rabies viral vectors that left transduced cells alive and healthy indefinitely. Deletion of the viral polymerase gene abolished cytotoxicity and reduced transgene expression to trace levels but left vectors still able to retrogradely infect projection neurons and express recombinases, allowing downstream expression of other transgene products such as fluorophores and calcium indicators. The morphology of retrogradely targeted cells appeared unperturbed at 1 year postinjection. Whole-cell patch-clamp recordings showed no physiological abnormalities at 8 weeks. Longitudinal two-photon structural and functional imaging in vivo, tracking thousands of individual neurons for up to 4 months, showed that transduced neurons did not die but retained stable visual response properties even at the longest time points imaged.


Subject(s)
Cerebral Cortex/physiology , Genetic Vectors/genetics , Neural Pathways/physiology , Neurons/metabolism , Sequence Deletion/genetics , Thalamus/cytology , Action Potentials/physiology , Age Factors , Analysis of Variance , Animals , Female , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Transgenic , Optogenetics , Patch-Clamp Techniques , Rats , Rats, Long-Evans , Transduction, Genetic
9.
mBio ; 8(5)2017 10 31.
Article in English | MEDLINE | ID: mdl-29089431

ABSTRACT

In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers) that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using ß-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification.IMPORTANCE The glycine riboswitch is a unique cis-acting mRNA element that contains two tandem homologous glycine-binding domains that act on a single expression platform to regulate gene expression in response to glycine. While many in vitro experiments have characterized the tandem architecture of the glycine riboswitch, little work has investigated the behavior of this riboswitch in vivo In this study, we analyzed the proposed models of tandem glycine riboswitch regulation in the context of its native locus within the Bacillus subtilis genome and examined how disruptions to glycine riboswitch function impact organismal fitness. Our work offers new insights into riboswitch function in vivo and reinforces the potential of riboswitches as novel antimicrobial targets.


Subject(s)
Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial , Glycine/metabolism , Riboswitch/physiology , Aptamers, Nucleotide , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Biofilms , Genome, Bacterial , Glycine/pharmacology , Mutation , Nucleic Acid Conformation , Operon , RNA, Bacterial/chemistry , Riboswitch/genetics , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...