Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 182(5): 1232-1251.e22, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32822576

ABSTRACT

Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.


Subject(s)
Lung Neoplasms/genetics , Biomarkers, Tumor/genetics , Cell Line , Ecosystem , Humans , Lung Neoplasms/pathology , Macrophages/pathology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , T-Lymphocytes/pathology , Tumor Microenvironment/genetics
2.
Cancer Cytopathol ; 119(2): 102-10, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21287691

ABSTRACT

BACKGROUND: The application of ancillary molecular testing is becoming more important for the diagnosis and classification of disease. The use of fine-needle aspiration (FNA) biopsy as the means of sampling tumors in conjunction with molecular testing could be a powerful combination. FNA is minimally invasive, cost effective, and usually demonstrates accuracy comparable to diagnoses based on excisional biopsies. Quality control (QC) and test validation requirements for development of molecular tests impose a need for access to pre-existing clinical samples. Tissue banking of excisional biopsy specimens is frequently performed at large research institutions, but few have developed protocols for preservation of cytologic specimens. This study aimed to evaluate cryopreservation of FNA specimens as a method of maintaining cellular morphology and ribonucleic acid (RNA) integrity in banked tissues. METHODS: FNA specimens were obtained from fresh tumor resections, processed by using a cryopreservation protocol, and stored for up to 27 weeks. Upon retrieval, samples were made into slides for morphological evaluation, and RNA was extracted and assessed for integrity by using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif). RESULTS: Cryopreserved specimens showed good cell morphology and, in many cases, yielded intact RNA. Cases showing moderate or severe RNA degradation could generally be associated with prolonged specimen handling or sampling of necrotic areas. CONCLUSIONS: FNA specimens can be stored in a manner that maintains cellular morphology and RNA integrity necessary for studies of gene expression. In addition to addressing quality control (QC) and test validation needs, cytology banks will be an invaluable resource for future molecular morphologic and diagnostic research studies.


Subject(s)
Biopsy, Fine-Needle , Neoplasms/genetics , Preservation, Biological/standards , RNA, Neoplasm/metabolism , Cytological Techniques , Humans , Neoplasms/pathology , Preservation, Biological/methods , Quality Control , RNA Stability , RNA, Neoplasm/genetics , Reproducibility of Results , Time Factors , Tissue Banks/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...