Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 174033, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885708

ABSTRACT

Disturbed soils, including manufactured topsoils, often lack physical and chemical properties conducive to vegetation establishment. As a result, efforts to stabilize disturbed soils with vegetation are susceptible to failure. Urban organic waste products such as wood mulch, composted leaf and yard waste, and biosolids are widely distributed as organic amendments that enhance sustainability and plant establishment. Correct use can be determined by examining soil properties such as pH; the concentration of soluble salts (SS); and plant available nutrients - particularly N, C and P; as well as root and shoot growth. This research examined the effects of three typical organic amendments on fertility, establishment, and nutrient loss. A manufactured topsoil was used as the base soil for all treatments, including a control unamended soil (CUT), and soil amended with either mulch (MAT), composted leaf and yard waste (LAT), or biosolids (BAT). A 2 % organic matter concentration increase was sought but not achieved due to difficulty in reproducing lab results at a larger scale. Results showed that LAT improved soil fertility, particularly N-P-K concentrations while maintaining a good C:N ratio, pH, and SS concentration. BAT was the most effective at enhancing shoot growth but results suggest that improved growth rates could result in increased maintenance. Additionally, biosolids were an excellent source of nutrients, especially N-P-K and S, but diminished root growth and N leachate losses indicate that N was applied in excess of turfgrass requirements. Therefore, biosolids could be used as fertilizer, subject to recommended rates for turfgrass establishment to prevent poor root growth and waterborne N pollution. To ensure establishment efforts are successful, MAT is not recommended without a supplemental source of soluble N. Altogether, study results and conclusions could inform others seeking to improve specifications for disturbed soil where turfgrass establishment is needed to stabilize soil.


Subject(s)
Soil , Soil/chemistry , Fertilizers , Nitrogen/analysis , Nutrients/analysis , Phosphorus/analysis , Composting/methods
2.
Sci Total Environ ; 918: 170649, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38331290

ABSTRACT

Anthropogenic disturbance of soils can disrupt soil structure, diminish fertility, alter soil chemical properties, and cause erosion. Current remediation practices involve amending degraded urban topsoils lacking in organic matter and nutrition with organic amendments (OA) to enhance vegetative growth. However, the impact of OAs on water quality and structural properties at rates that meet common topsoil organic matter specifications need to be studied and understood. This study tested three commonly available OAs: shredded wood mulch, leaf-based compost, and class A Exceptional Quality stabilized sewage sludge (or biosolids) for nutrient (nitrogen and phosphorus) water quality, soil shear strength, and hydraulic properties, through two greenhouse tub studies. Findings showed that nitrogen losses to leachate were greater in the biosolids amended topsoils compared to leaf-compost, mulch amended topsoils, and control treatments. Steady-state mean total nitrogen (N) concentrations from biosolids treatment exceeded typical highway stormwater concentrations by at least 25 times. Soil total N content combined with the carbon:nitrogen ratio were identified to be the governing properties of N leaching in soils. Study soils, irrespective of the type of amendment, reduced the applied (tap) water phosphorus (P) concentration of ∼0.3 mg-P/L throughout the experiment. Contrary to the effects on N leaching, P was successfully retained by the biosolids amendment, due to the presence of greater active iron contents. A breakthrough mechanism for P was observed in leaf compost amended soil, where the effluent concentrations of P continued to increase with each rainfall application, possibly due to an saturation of soil adsorption sites. The addition of OAs also improved the strength and hydraulic properties of soils. The effective interlocking mechanisms between the soil and OA surfaces could provide soil its required strength and stability, particularly on slopes. OAs also improved soil fertility to promote turf growth. Presence of vegetative root zones can further reinforce the soil and control erosion.


Subject(s)
Composting , Soil Pollutants , Biosolids , Shear Strength , Soil/chemistry , Phosphorus/chemistry , Nutrients , Soil Pollutants/analysis , Sewage/chemistry , Nitrogen
3.
FEMS Microbiol Lett ; 332(1): 54-60, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22506539

ABSTRACT

Phytophthora ramorum, Phytophthora alni, and Phytophthora kernoviae present significant threats to biosecurity. As zoosporic oomycetes, these plant pathogens may spread through natural waterways and irrigation systems. However, survival of these pathogens in aquatic systems in response to water quality is not well understood. In this study, we investigated their zoospore survival at pH 3-11 in a 10% Hoagland's solution over a 14-day period. The results showed that all three pathogens were most stable at pH 7, although the populations declined overnight irrespective of pH. Extended survival of these species depended on the tolerance of pH of their germinants. Germinants of P. alni ssp. alni and P. ramorum were more basic tolerant (pH 5-11), while those of P. kernoviae were more acidic tolerant (pH 3-9). These tolerant germinants formed compact hyphae or secondary sporangia to allow longer survival of these pathogens. Long-term survival at a broad pH range suggests that these pathogens, especially P. ramorum, are adapted to an aquatic environment and pose a threat to new production areas through water dispersal.


Subject(s)
Phytophthora/physiology , Water Quality , Adaptation, Physiological , Colony-Forming Units Assay , Hydrobiology , Hydrochloric Acid , Hydrogen-Ion Concentration , Sodium Hydroxide , Spores
4.
Mycologia ; 104(5): 1097-108, 2012.
Article in English | MEDLINE | ID: mdl-22492404

ABSTRACT

Two distinct subgroups (L2 and A(-2)) were recovered from irrigation reservoirs and a stream in Virginia, USA. After molecular, morphological and physiological examinations, the L2 subgroup was named Phytophthora aquimorbida and the A(-2) designated as Phytophthora taxon 'aquatilis'. Both taxa are homothallic. P. aquimorbida is characterized by its noncaducous and nonpapillate sporangia, catenulate and radiating hyphal swellings and thick-walled plerotic oospores formed in globose oogonia mostly in the absence of an antheridium. P. taxon 'aquatilis' produces plerotic oospores in globose oogonia mostly with a paragynous antheridium. It has semi-papillate, caducous sporangia with variable pedicels, but it does not have hyphal swelling. Analyses of ITS, CO1, ß-tubulin and NADH1 sequences revealed that P. aquimorbida is closely related to P. hydropathica, P. irrigata and P. parsiana, and P. taxon 'aquatilis' is related to P. multivesiculata. The optimum temperature for culture growth is 30 and 20 C for P. aquimorbida and P. taxon 'aquatilis' respectively. Both taxa were pathogenic to rhododendron plants and caused root discoloration, pale leaves, wilting, tip necrosis and dieback. Their plant biosecurity risk also is discussed.


Subject(s)
Phytophthora/classification , Plant Diseases/microbiology , Rhododendron/microbiology , Rivers/microbiology , DNA, Fungal/genetics , Phylogeny , Phytophthora/genetics , Phytophthora/isolation & purification , Phytophthora/ultrastructure , Virginia , Water Microbiology
5.
Appl Environ Microbiol ; 75(13): 4307-14, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19429548

ABSTRACT

Phytophthora species, a group of destructive plant pathogens, are commonly referred to as water molds, but little is known about their aquatic ecology. Here we show the effect of pH on zoospore survival of seven Phytophthora species commonly isolated from irrigation reservoirs and natural waterways and dissect zoospore survival strategy. Zoospores were incubated in a basal salt liquid medium at pH 3 to 11 for up to 7 days and then plated on a selective medium to determine their survival. The optimal pHs differed among Phytophthora species, with the optimal pH for P. citricola at pH 9, the optimal pH for P. tropicalis at pH 5, and the optimal pH for the five other species, P. citrophthora, P. insolita, P. irrigata, P. megasperma, and P. nicotianae, at pH 7. The greatest number of colonies was recovered from zoospores of all species plated immediately after being exposed to different levels of pH. At pH 5 to 11, the recovery rate decreased sharply (P < or = 0.0472) after 1-day exposure for five of the seven species. In contrast, no change occurred (P > or = 0.1125) in the recovery of any species even after a 7-day exposure at pH 3. Overall, P. megasperma and P. citricola survived longer at higher rates in a wider range of pHs than other species did. These results are generally applicable to field conditions as indicated by additional examination of P. citrophthora and P. megasperma in irrigation water at different levels of pH. These results challenge the notion that all Phytophthora species inhabit aquatic environments as water molds and have significant implications in the management of plant diseases resulting from waterborne microbial contamination.


Subject(s)
Microbial Viability , Phytophthora/drug effects , Spores/drug effects , Water Microbiology , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...