Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Rep ; 35(10): 109224, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107252

ABSTRACT

Drug development is hampered by poor target selection. Phenotypic screens using neurons differentiated from patient stem cells offer the possibility to validate known and discover novel disease targets in an unbiased fashion. To identify targets for managing hyperexcitability, a pathological feature of amyotrophic lateral sclerosis (ALS), we design a multi-step screening funnel using patient-derived motor neurons. High-content live cell imaging is used to evaluate neuronal excitability, and from a screen against a chemogenomic library of 2,899 target-annotated compounds, 67 reduce the hyperexcitability of ALS motor neurons carrying the SOD1(A4V) mutation, without cytotoxicity. Bioinformatic deconvolution identifies 13 targets that modulate motor neuron excitability, including two known ALS excitability modulators, AMPA receptors and Kv7.2/3 ion channels, constituting target validation. We also identify D2 dopamine receptors as modulators of ALS motor neuron excitability. This screen demonstrates the power of human disease cell-based phenotypic screens for identifying clinically relevant targets for neurological disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cell Differentiation , Humans , Phenotype
2.
PLoS One ; 12(9): e0184843, 2017.
Article in English | MEDLINE | ID: mdl-28934246

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antibodies/metabolism , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme-Linked Immunosorbent Assay , Fluorescence Polarization , Humans , Mass Spectrometry , Models, Molecular , Molecular Structure , Nucleotides, Cyclic/immunology , Nucleotidyltransferases/metabolism , Protein Binding , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis
3.
Toxicol In Vitro ; 29(1): 251-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25448811

ABSTRACT

Lack of in vitro to in vivo translation is a major challenge in safety prediction during early drug discovery.One of the most common in vitro assays to evaluate the probability of a compound to cause adverse effects is a cytotoxicity assay. Cytotoxicity of a compound is often measured by dose­response curves assuming the administered doses and intracellular exposures are equal at the time of measurement.However, this may not be true for compounds with low membrane permeability or those which are substrates for drug transporters as intracellular concentrations are determined both by passive permeability and active uptake through drug transporters. We show here that three antiviral drugs, adefovir, cidofovir and tenofovir exhibit significantly increased cytotoxicity in HEK293 cells transfected with organic anion transporter (OAT) 1 and 3 compared to a lack of cytotoxicity in HEK293 wildtype cells. A further look at the media and intracellular drug concentrations showed that 24 h after dosing, all three drugs had higher intracellular drug concentrations than that of media in the HEK-OAT1 cells whereas the intracellular drug concentrations in the wildtype cells were much lower than the administered doses. Comparing cytotoxicity IC(50) values of adefovir, cidofovir and tenofovir based on administered doses and measured intracellular concentrations in HEK-OAT1 cells revealed that intracellular drug concentrations have significant impact on calculated IC(50) values. Tenofovir showed much less intrinsic cytotoxicity than adefovir and cidofovir using intracellular concentrations rather than media concentration. Our data suggest that for low permeable drugs or drugs that are substrates for drug transporters, the choice of cellular model is critical for providing an accurate determination of cytotoxicity.


Subject(s)
Adenine/analogs & derivatives , Antiviral Agents/toxicity , Cytosine/analogs & derivatives , Organophosphonates/toxicity , Adenine/analysis , Adenine/toxicity , Antiviral Agents/analysis , Cidofovir , Cytosine/analysis , Cytosine/toxicity , Dose-Response Relationship, Drug , HEK293 Cells/chemistry , HEK293 Cells/drug effects , Humans , Organic Anion Transport Protein 1/biosynthesis , Organic Anion Transport Protein 1/metabolism , Organophosphonates/analysis , Tenofovir , Toxicity Tests
4.
J Med Chem ; 56(12): 5079-93, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23735048

ABSTRACT

We report novel polymyxin analogues with improved antibacterial in vitro potency against polymyxin resistant recent clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa . In addition, a human renal cell in vitro assay (hRPTEC) was used to inform structure-toxicity relationships and further differentiate analogues. Replacement of the Dab-3 residue with a Dap-3 in combination with a relatively polar 6-oxo-1-phenyl-1,6-dihydropyridine-3-carbonyl side chain as a fatty acyl replacement yielded analogue 5x, which demonstrated an improved in vitro antimicrobial and renal cytotoxicity profiles relative to polymyxin B (PMB). However, in vivo PK/PD comparison of 5x and PMB in a murine neutropenic thigh model against P. aeruginosa strains with matched MICs showed that 5x was inferior to PMB in vivo, suggesting a lack of improved therapeutic index in spite of apparent in vitro advantages.


Subject(s)
Cross Infection/drug therapy , Drug Discovery , Drug Resistance, Multiple/drug effects , Gram-Negative Bacteria/drug effects , Polymyxins/chemistry , Polymyxins/pharmacology , beta-Alanine/analogs & derivatives , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Dogs , Female , Gram-Negative Bacteria/physiology , Humans , Male , Microbial Sensitivity Tests , Polymyxins/pharmacokinetics , Polymyxins/toxicity , Rats , beta-Alanine/chemistry
5.
Toxicol Sci ; 134(1): 73-82, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23564645

ABSTRACT

Cytotoxicity of a compound is determined by the intracellular concentration mediated both by passive permeability and active uptake through drug transporters. However, the major liver uptake transporters were either absent or expressed at significantly lower levels in human liver cell lines than in human liver. When comparing cytotoxicity of five statins, the organic anion transporting polypeptide 1B1 expressing HEK cells showed a significantly higher sensitivity than the wild-type HEK cells. The IC50 shifts ranged from 9- to >100-fold, and the potency shifts collapsed in the presence of rifampicin, the inhibitor for OATPs. The extent of the IC50 shift correlated with the permeability of the statins with high permeable compounds having smaller shifts and low permeable compounds having larger shifts. The changes in statin potency in transporter-transfected cells reflect the active uptake of statins into the cells, and the increased intracellular drug concentration lead to increased toxicity. The data suggested that uptake transporters have a significant impact on the outcomes of a cell-based assay and should be considered during the early stages of compound toxicity screening in drug discovery. For compounds with low permeability that are likely to undergo transporter-mediated uptake, it is important to test them in transporter-competent cell models.


Subject(s)
Hepatocytes/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Organic Anion Transporters/metabolism , Cell Culture Techniques , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Hep G2 Cells , Hepatocytes/metabolism , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Inhibitory Concentration 50 , Liver-Specific Organic Anion Transporter 1 , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Real-Time Polymerase Chain Reaction , Rifampin/pharmacology , Substrate Specificity , Transfection
6.
J Med Chem ; 55(4): 1662-70, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22257165

ABSTRACT

The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Hydroxamic Acids/chemical synthesis , Pyridones/chemical synthesis , Sulfonic Acids/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Humans , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Conformation , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonic Acids/pharmacokinetics , Sulfonic Acids/pharmacology
7.
J Med Chem ; 55(2): 914-23, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22175825
8.
Ann N Y Acad Sci ; 1222: 49-54, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21434942

ABSTRACT

Linezolid (Zyvox) is the first member of an entirely new class of antibiotics to reach the market in over 35 years; it was approved for use in 2000. A member of the oxazolidinone class of antibiotics, linezolid is highly effective for the treatment of serious Gram-positive infections and has activity that compares favorably with vancomycin for most clinically relevant pathogens. Zyvox is approved for use against serious Gram-positive infections, including those caused by Streptococcus pneumoniae, and the very challenging methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium organisms. Zyvox inhibits bacterial protein synthesis by binding to 23S rRNA in the catalytic site of the 50S ribosome. It can be administered both orally and intravenously and has good tissue distribution. Recent results have demonstrated that oxazolidinone analogs related to linezolid are effective in treating pulmonary tuberculosis caused by resistant Mycobacterium tuberculosis in animal infection models and suggest additional new therapeutic applications for these antibiotics.


Subject(s)
Acetamides/therapeutic use , Anti-Bacterial Agents/therapeutic use , Gram-Positive Bacterial Infections/drug therapy , Oxazolidinones/therapeutic use , Acetamides/chemical synthesis , Acetamides/pharmacokinetics , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Drug Discovery/trends , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/physiology , Humans , Linezolid , Models, Biological , Models, Molecular , Oxazolidinones/chemical synthesis , Oxazolidinones/classification , Oxazolidinones/pharmacokinetics
11.
Mol Cell ; 26(3): 393-402, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17499045

ABSTRACT

The oxazolidinones are one of the newest classes of antibiotics. They inhibit bacterial growth by interfering with protein synthesis. The mechanism of oxazolidinone action and the precise location of the drug binding site in the ribosome are unknown. We used a panel of photoreactive derivatives to identify the site of action of oxazolidinones in the ribosomes of bacterial and human cells. The in vivo crosslinking data were used to model the position of the oxazolidinone molecule within its binding site in the peptidyl transferase center (PTC). Oxazolidinones interact with the A site of the bacterial ribosome where they should interfere with the placement of the aminoacyl-tRNA. In human cells, oxazolidinones were crosslinked to rRNA in the PTC of mitochondrial, but not cytoplasmic, ribosomes. Interaction of oxazolidinones with the mitochondrial ribosomes provides a structural basis for the inhibition of mitochondrial protein synthesis, which is linked to clinical side effects associated with oxazolidinone therapy.


Subject(s)
Mitochondria/drug effects , Oxazolidinones/pharmacology , Peptidyl Transferases/drug effects , Protein Synthesis Inhibitors/pharmacology , RNA, Ribosomal/drug effects , Software , Acetamides , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Binding Sites/drug effects , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , Cytoplasm/drug effects , Cytoplasm/enzymology , Drug Resistance/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Humans , Linezolid , Mitochondria/enzymology , Models, Molecular , Molecular Structure , Mutation/genetics , Oxazolidinones/chemistry , Peptidyl Transferases/metabolism , Protein Synthesis Inhibitors/chemistry , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal, 23S , RNA, Transfer, Amino Acyl/antagonists & inhibitors , RNA, Transfer, Amino Acyl/metabolism , Staining and Labeling , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology
12.
Antimicrob Agents Chemother ; 49(9): 3896-902, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16127068

ABSTRACT

The oxazolidinones are a relatively new structural class of antibacterial agents that act by inhibiting bacterial protein synthesis. The oxazolidinones inhibit mitochondrial protein synthesis, as shown by [35S]methionine incorporation into intact rat heart mitochondria. Treatment of K562 human erythroleukemia cells with the oxazolidinone eperezolid resulted in a time- and concentration-dependent inhibition of cell proliferation. The cells remained viable, but an increase in doubling time was observed with eperezolid treatment. Inhibition was reversible, since washing and refeeding of cells in the absence of compound resulted in a resumption of growth. The growth-inhibitory effect of the oxazolidinones did not appear to be cell type specific, and inhibition of CHO and HEK cells also was demonstrated. Treatment of cells resulted in a decrease in mitochondrial cytochrome oxidase subunit I levels, consistent with an inhibition of mitochondrial protein synthesis. Eperezolid caused no growth inhibition of rho zero (rho0) cells, which contain no mitochondrial DNA; however, the growth of the parent 143B cells was inhibited. These results provide a direct demonstration that the inhibitory effect of eperezolid in mammalian cells is the result of mitochondrial protein synthesis inhibition.


Subject(s)
Cell Proliferation/drug effects , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Oxazoles/pharmacology , Protein Synthesis Inhibitors , Acetamides/pharmacology , Animals , Blotting, Western , Cells, Cultured , Flow Cytometry , Humans , In Vitro Techniques , K562 Cells , Linezolid , Oxazolidinones/pharmacology , Rats , Structure-Activity Relationship
13.
J Med Chem ; 47(13): 3367-80, 2004 Jun 17.
Article in English | MEDLINE | ID: mdl-15189033

ABSTRACT

Abnormal proliferation mediated by disruption of the normal cell cycle mechanisms is a hallmark of virtually all cancer cells. Compounds targeting complexes between cyclin-dependent kinases (CDK) and cyclins, such as CDK2/cyclin A and CDK2/cyclin E, and inhibiting their kinase activity are regarded as promising antitumor agents to complement the existing therapies. From a high-throughput screening effort, we identified a new class of CDK2/cyclin A/E inhibitors. The hit-to-lead expansion of this class is described. X-ray crystallographic data of early compounds in this series, as well as in vitro testing funneled for rapidly achieving in vivo efficacy, led to a nanomolar inhibitor of CDK2/cyclin A (N-(5-cyclopropyl-1H-pyrazol-3-yl)-2-(2-naphthyl)acetamide (41), PNU-292137, IC50 = 37 nM) with in vivo antitumor activity (TGI > 50%) in a mouse xenograft model at a dose devoid of toxic effects.


Subject(s)
Acetamides/chemical synthesis , Antineoplastic Agents/chemical synthesis , CDC2-CDC28 Kinases/antagonists & inhibitors , Cyclin A/antagonists & inhibitors , Pyrazoles/chemical synthesis , Acetamides/chemistry , Acetamides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , CDC2-CDC28 Kinases/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Cyclin A/chemistry , Cyclin-Dependent Kinase 2 , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Neoplasm Transplantation , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship , Transplantation, Heterologous
14.
Bioorg Med Chem Lett ; 13(20): 3491-5, 2003 Oct 20.
Article in English | MEDLINE | ID: mdl-14505655

ABSTRACT

Two-dimensional libraries of 4-acylamino-1,3-thiazoles 9 were prepared via Curtius rearrangement of 1,3-thiazole-4-carbonyl azides 6, trapping of the intermediate isocyanates with oxime resin, and thermal regeneration of the isocyanates from the washed resin in the presence of nucleophiles. Several compounds proved to be selective inhibitors of CDK5/p25 versus the closely homologous CDK2/cyclin A enzyme, with the best analogue (43) possessing over 100-fold selectivity.


Subject(s)
Combinatorial Chemistry Techniques , Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Thiazoles/chemical synthesis , Cyclin-Dependent Kinase 5 , Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...