Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Brief Bioinform ; 22(3)2021 05 20.
Article in English | MEDLINE | ID: mdl-32533145

ABSTRACT

Mapping quantitative trait loci (QTL) in autotetraploid species represents a timely and challenging task. Two papers published by Wu and his colleagues proposed statistical methods for QTL mapping in these evolutionarily and economically important species. In this Letter to the Editor, we present critical comments on the fundamental conceptual errors involved, from both statistical and genetic points of view.


Subject(s)
Quantitative Trait Loci
2.
New Phytol ; 230(1): 387-398, 2021 04.
Article in English | MEDLINE | ID: mdl-31913501

ABSTRACT

Dissecting the genetic architecture of quantitative traits in autotetraploid species is a methodologically challenging task, but a pivotally important goal for breeding globally important food crops, including potato and blueberry, and ornamental species such as rose. Mapping quantitative trait loci (QTLs) is now a routine practice in diploid species but is far less advanced in autotetraploids, largely due to a lack of analytical methods that account for the complexities of tetrasomic inheritance. We present a novel likelihood-based method for QTL mapping in outbred segregating populations of autotetraploid species. The method accounts properly for sophisticated features of gene segregation and recombination in an autotetraploid meiosis. It may model and analyse molecular marker data with or without allele dosage information, such as that from microarray or sequencing experiments. The method developed outperforms existing bivalent-based methods, which may fail to model and analyse the full spectrum of experimental data, in the statistical power of QTL detection, and accuracy of QTL location, as demonstrated by an intensive simulation study and analysis of data sets collected from a segregating population of potato (Solanum tuberosum). The study enables QTL mapping analysis to be conducted in autotetraploid species under a rigorous tetrasomic inheritance model.


Subject(s)
Quantitative Trait Loci , Solanum tuberosum , Chromosome Mapping , Likelihood Functions , Models, Genetic , Plant Breeding , Solanum tuberosum/genetics , Tetraploidy
3.
SLAS Discov ; 24(2): 121-132, 2019 02.
Article in English | MEDLINE | ID: mdl-30543471

ABSTRACT

Methods to measure cellular target engagement are increasingly being used in early drug discovery. The Cellular Thermal Shift Assay (CETSA) is one such method. CETSA can investigate target engagement by measuring changes in protein thermal stability upon compound binding within the intracellular environment. It can be performed in high-throughput, microplate-based formats to enable broader application to early drug discovery campaigns, though high-throughput forms of CETSA have only been reported for a limited number of targets. CETSA offers the advantage of investigating the target of interest in its physiological environment and native state, but it is not clear yet how well this technology correlates to more established and conventional cellular and biochemical approaches widely used in drug discovery. We report two novel high-throughput CETSA (CETSA HT) assays for B-Raf and PARP1, demonstrating the application of this technology to additional targets. By performing comparative analyses with other assays, we show that CETSA HT correlates well with other screening technologies and can be applied throughout various stages of hit identification and lead optimization. Our results support the use of CETSA HT as a broadly applicable and valuable methodology to help drive drug discovery campaigns to molecules that engage the intended target in cells.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Temperature , Cell Line, Tumor , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Proto-Oncogene Proteins B-raf/metabolism
4.
New Phytol ; 220(1): 332-346, 2018 10.
Article in English | MEDLINE | ID: mdl-29987874

ABSTRACT

Dissecting the genetic architecture of quantitative traits is a crucial goal for efficient breeding of polyploid plants, including autotetraploid crop species, such as potato and coffee, and ornamentals such as rose. To meet this goal, a quantitative genetic model is needed to link the genetic effects of genes or genotypes at quantitative trait loci (QTL) to the phenotype of quantitative traits. We present a statistically tractable quantitative genetic model for autotetraploids based on orthogonal contrast comparisons in the general linear model. The new methods are suitable for autotetraploid species with any population genetic structure and take full account of the essential features of autotetrasomic inheritance. The statistical properties of the new methods are explored and compared to an alternative method in the literature by simulation studies. We have shown how these methods can be applied for quantitative genetic analysis in autotetraploids by analysing trait phenotype data from an autotetraploid potato segregating population. Using trait segregation analysis, we showed that both highly heritable traits of flowering time and plant height were under the control of major QTL. The orthogonal model directly dissects genetic variance into independent components and gives consistent estimates of genetic effects provided that tetrasomic gene segregation is considered.


Subject(s)
Models, Genetic , Polyploidy , Quantitative Trait Loci/genetics , Solanum tuberosum/genetics , Chromosome Segregation/genetics , Computer Simulation , Flowers/physiology , Genes, Plant , Plant Breeding , Solanum tuberosum/anatomy & histology
5.
SLAS Discov ; 23(1): 11-22, 2018 01.
Article in English | MEDLINE | ID: mdl-28945981

ABSTRACT

A high-throughput screen (HTS) of human 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) resulted in several series of compounds with the potential for further optimization. Informatics was used to identify active chemotypes with lead-like profiles and remove compounds that commonly occurred as actives in other HTS screens. The activities were confirmed with IC50 measurements from two orthogonal assay technologies, and further analysis of the Hill slopes and comparison of the ratio of IC50 values at 10 times the enzyme concentration were used to identify artifact compounds. Several series of compounds were rejected as they had both high slopes and poor ratios. A small number of compounds representing the different leading series were assessed using isothermal titration calorimetry, and the X-ray crystal structure of the complex with PFKFB3 was solved. The orthogonal assay technology and isothermal calorimetry were demonstrated to be unreliable in identifying false-positive compounds in this case. Presented here is the discovery of the dihydropyrrolopyrimidinone series of compounds as active and novel inhibitors of PFKFB3, shown by X-ray crystallography to bind to the adenosine triphosphate site. The crystal structures of this series also reveal it is possible to flip the binding mode of the compounds, and the alternative orientation can be driven by a sigma-hole interaction between an aromatic chlorine atom and a backbone carbonyl oxygen. These novel inhibitors will enable studies to explore the role of PFKFB3 in driving the glycolytic phenotype of tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Phosphofructokinase-2/antagonists & inhibitors , Antineoplastic Agents/chemistry , Calorimetry/methods , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphofructokinase-2/chemistry , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Quantitative Structure-Activity Relationship , Small Molecule Libraries , Workflow
6.
ACS Chem Biol ; 12(12): 3113-3125, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29131570

ABSTRACT

The ubiquitin proteasome system is widely postulated to be a new and important field of drug discovery for the future, with the ubiquitin specific proteases (USPs) representing one of the more attractive target classes within the area. Many USPs have been linked to critical axes for therapeutic intervention, and the finding that USP28 is required for c-Myc stability suggests that USP28 inhibition may represent a novel approach to targeting this so far undruggable oncogene. Here, we describe the discovery of the first reported inhibitors of USP28, which we demonstrate are able to bind to and inhibit USP28, and while displaying a dual activity against the closest homologue USP25, these inhibitors show a high degree of selectivity over other deubiquitinases (DUBs). The utility of these compounds as valuable probes to investigate and further explore cellular DUB biology is highlighted by the demonstration of target engagement against both USP25 and USP28 in cells. Furthermore, we demonstrate that these inhibitors are able to elicit modulation of both the total levels and the half-life of the c-Myc oncoprotein in cells and also induce apoptosis and loss of cell viability in a range of cancer cell lines. We however observed a narrow therapeutic index compared to a panel of tissue-matched normal cell lines. Thus, it is hoped that these probes and data presented herein will further advance our understanding of the biology and tractability of DUBs as potential future therapeutic targets.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , HCT116 Cells , Humans
7.
Theor Appl Genet ; 129(9): 1739-57, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27316437

ABSTRACT

KEY MESSAGE: This optimized approach provides both a computational tool and a library construction protocol, which can maximize the number of genomic sequence reads that uniformly cover a plant genome and minimize the number of sequence reads representing chloroplast DNA and rRNA genes. One can implement the developed computational tool to feasibly design their own RAD-seq experiment to achieve expected coverage of sequence variant markers for large plant populations using information of the genome sequence and ideally, though not necessarily, information of the sequence polymorphism distribution in the genome. Advent of the next generation sequencing techniques motivates recent interest in developing sequence-based identification and genotyping of genome-wide genetic variants in large populations, with RAD-seq being a typical example. Without taking proper account for the fact that chloroplast and rRNA genes may occupy up to 60 % of the resulting sequence reads, the current RAD-seq design could be very inefficient for plant and crop species. We presented here a generic computational tool to optimize RAD-seq design in any plant species and experimentally tested the optimized design by implementing it to screen for and genotype sequence variants in four plant populations of diploid and autotetraploid Arabidopsis and potato Solanum tuberosum. Sequence data from the optimized RAD-seq experiments shows that the undesirable chloroplast and rRNA contributed sequence reads can be controlled at 3-10 %. Additionally, the optimized RAD-seq method enables pre-design of the required uniformity and density in coverage of the high quality sequence polymorphic markers over the genome of interest and genotyping of large plant or crop populations at a competitive cost in comparison to other mainstream rivals in the literature.


Subject(s)
DNA, Plant/genetics , Genome, Plant , Genotyping Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Arabidopsis/genetics , Computational Biology , DNA, Chloroplast/genetics , RNA, Plant/genetics , Sequence Analysis, DNA/methods , Solanum tuberosum/genetics
8.
Oncotarget ; 7(3): 2417-32, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26678031

ABSTRACT

MicroRNAs (miRNAs) have recently been recognized as targets for anti-metastatic therapy against cancer malignancy. Development of effective miRNA mediated therapies remains a challenge to both basic research and clinical practice. Here we presented the evidence for a miR-708-5p mediated replacement therapy against metastatic lung cancer. Expression of miR-708-5p was substantially reduced in metastatic lung cancer samples and cancer cell lines when compared to non-metastatic counterparts. Expression of the miRNA suppressed cell survival and metastasis in vitro through its direct target p21, and inhibited the PI3K/AKT pathway and stem cell-like characteristics of lung cancer cells. Systemic administration of this miRNA in a mouse model of NSCLC using polyethylenimine (PEI)-mediated delivery of unmodified miRNA mimics induced tumor specific apoptosis. It also effectively protected the tested animals from developing metastatic malignancy without causing any observed toxicity. The findings strongly support miR-708-5p as a novel and effective therapeutic agent against metastatic malignancy of non-small cell lung cancer.


Subject(s)
Adenocarcinoma/prevention & control , Carcinoma, Non-Small-Cell Lung/prevention & control , Carcinoma, Squamous Cell/prevention & control , Lung Neoplasms/prevention & control , MicroRNAs/genetics , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Animals , Apoptosis , Blotting, Western , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/secondary , Cell Adhesion , Cell Cycle , Cell Movement , Cell Proliferation , Female , Humans , Immunoenzyme Techniques , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured , Wound Healing , Xenograft Model Antitumor Assays
9.
J Bacteriol ; 197(10): 1726-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25733621

ABSTRACT

UNLABELLED: A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. Resistance to the sulfonyl piperazine maps to LpxH, which catalyzes the fourth step in the synthesis of lipid A, the outer membrane anchor of lipopolysaccharide (LPS). To our knowledge, this compound is the first reported inhibitor of LpxH. Resistance to the pyrazole compound mapped to mutations in either LolC or LolE, components of the essential LolCDE transporter complex, which is required for trafficking of lipoproteins to the outer membrane. Biochemical experiments with E. coli spheroplasts showed that the pyrazole compound is capable of inhibiting the release of lipoproteins from the inner membrane. Both of these compounds have significant promise as chemical probes to further interrogate the potential of these novel cell wall components for antimicrobial therapy. IMPORTANCE: The prevalence of antibacterial resistance, particularly among Gram-negative organisms, signals a need for novel antibacterial agents. A phenotypic screen using AmpC as a sensor for compounds that inhibit processes involved in Gram-negative envelope biogenesis led to the identification of two novel inhibitors with unique mechanisms of action targeting Escherichia coli outer membrane biogenesis. One compound inhibits the transport system for lipoprotein transport to the outer membrane, while the other compound inhibits synthesis of lipopolysaccharide. These results indicate that it is still possible to uncover new compounds with intrinsic antibacterial activity that inhibit novel targets related to the cell envelope, suggesting that the Gram-negative cell envelope still has untapped potential for therapeutic intervention.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Cell Wall/drug effects , Citrobacter freundii/enzymology , Escherichia coli/drug effects , High-Throughput Screening Assays/methods , Piperazines/isolation & purification , Pyrazoles/isolation & purification , Anti-Bacterial Agents/pharmacology , Cell Wall/genetics , Citrobacter freundii/genetics , Drug Resistance, Bacterial , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Gene Expression , Genes, Reporter , Piperazines/pharmacology , Pyrazoles/pharmacology
10.
Genome Biol Evol ; 6(11): 2998-3014, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25355807

ABSTRACT

DNA methylation in the genome plays a fundamental role in the regulation of gene expression and is widespread in the genome of eukaryotic species. For example, in higher vertebrates, there is a "global" methylation pattern involving complete methylation of CpG sites genome-wide, except in promoter regions that are typically enriched for CpG dinucleotides, or so called "CpG islands." Here, we comprehensively examined and compared the distribution of CpG sites within ten model eukaryotic species and linked the observed patterns to the role of DNA methylation in controlling gene transcription. The analysis revealed two distinct but conserved methylation patterns for gene promoters in human and mouse genomes, involving genes with distinct distributions of promoter CpGs and gene expression patterns. Comparative analysis with four other higher vertebrates revealed that the primary regulatory role of the DNA methylation system is highly conserved in higher vertebrates.


Subject(s)
DNA Methylation , Evolution, Molecular , Animals , CpG Islands , Genome, Human , Humans , Mice , Promoter Regions, Genetic , Transcription, Genetic
11.
BMC Genomics ; 15: 276, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24726045

ABSTRACT

BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.


Subject(s)
Chromosomes, Plant , Gene Expression Regulation, Plant , Genome, Plant , Polyploidy , Transcriptome , Triticum/genetics , Base Sequence , Expressed Sequence Tags , Gene Deletion , Gene Expression Profiling , Gene Library , Gene Silencing , Genes, Plant , Haplotypes , Organ Specificity/genetics , Quantitative Trait Loci , Reproducibility of Results , Sequence Alignment , Sequence Analysis, RNA
12.
BMC Genomics ; 15: 13, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24405759

ABSTRACT

BACKGROUND: While the possible sources underlying the so-called 'missing heritability' evident in current genome-wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal of understanding the relationship between phenotype and genotype. Here we used microarray gene expression measurements of lymphoblastoid cell lines and genome-wide SNP genotype data from 210 HapMap individuals to examine the heritability of gene expression traits. RESULTS: Heritability levels for expression of 10,720 genes were estimated by applying variance component model analyses and 1,043 expression quantitative loci (eQTLs) were detected. Our results indicate that gene expression traits display a bimodal distribution of heritability, one peak close to 0% and the other summit approaching 100%. Such a pattern of the within-population variability of gene expression heritability is common among different HapMap populations of unrelated individuals but different from that obtained in the CEU and YRI trio samples. Higher heritability levels are shown by housekeeping genes and genes associated with cis eQTLs. Both cis and trans eQTLs make comparable cumulative contributions to the heritability. Finally, we modelled gene-gene interactions (epistasis) for genes with multiple eQTLs and revealed that epistasis was not prevailing in all genes but made a substantial contribution in explaining total heritability for some genes analysed. CONCLUSIONS: We utilised a mixed effect model analysis for estimating genetic components from population based samples. On basis of analyses of genome-wide gene expression from four HapMap populations, we demonstrated detailed exploitation of the distribution of genetic heritabilities for expression traits from different populations, and highlighted the importance of studying interaction at the gene expression level as an important source of variation underlying missing heritability.


Subject(s)
Genome, Human , Quantitative Trait, Heritable , Epistasis, Genetic , Gene Expression , Genome-Wide Association Study , Genotype , HapMap Project , Humans , Models, Genetic , Phenotype , Polymorphism, Single Nucleotide
13.
PLoS Genet ; 10(1): e1004021, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24465217

ABSTRACT

Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Gene Expression Profiling , Genome, Fungal , MicroRNAs/genetics , Open Reading Frames/genetics , RNA, Antisense/genetics
14.
BMC Genomics ; 14: 653, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24063258

ABSTRACT

BACKGROUND: The analysis of polyploid genomes is problematic because homeologous subgenome sequences are closely related. This relatedness makes it difficult to assign individual sequences to the specific subgenome from which they are derived, and hinders the development of polyploid whole genome assemblies. RESULTS: We here present a next-generation sequencing (NGS)-based approach for assignment of subgenome-specific base-identity at sites containing homeolog-specific polymorphisms (HSPs): 'HSP base Assignment using NGS data through Diploid Similarity' (HANDS). We show that HANDS correctly predicts subgenome-specific base-identity at >90% of assayed HSPs in the hexaploid bread wheat (Triticum aestivum) transcriptome, thus providing a substantial increase in accuracy versus previous methods for homeolog-specific base assignment. CONCLUSION: We conclude that HANDS enables rapid and accurate genome-wide discovery of homeolog-specific base-identity, a capability having multiple applications in polyploid genomics.


Subject(s)
Diploidy , Genome, Plant/genetics , Polymorphism, Genetic , Polyploidy , Sequence Analysis, DNA/methods , Triticum/genetics , Base Sequence , Bread , Chromosomes, Plant/genetics
15.
Theor Appl Genet ; 124(2): 233-46, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21915710

ABSTRACT

Genome-wide association study (GWAS) has become an obvious general approach for studying traits of agricultural importance in higher plants, especially crops. Here, we present a GWAS of 32 morphologic and 10 agronomic traits in a collection of 615 barley cultivars genotyped by genome-wide polymorphisms from a recently developed barley oligonucleotide pool assay. Strong population structure effect related to mixed sampling based on seasonal growth habit and ear row number is present in this barley collection. Comparison of seven statistical approaches in a genome-wide scan for significant associations with or without correction for confounding by population structure, revealed that in reducing false positive rates while maintaining statistical power, a mixed linear model solution outperforms genomic control, structured association, stepwise regression control and principal components adjustment. The present study reports significant associations for sixteen morphologic and nine agronomic traits and demonstrates the power and feasibility of applying GWAS to explore complex traits in highly structured plant samples.


Subject(s)
Genetics, Population , Hordeum/anatomy & histology , Hordeum/growth & development , Hordeum/genetics , Phenotype , Chromosome Mapping , Computer Simulation , Genetic Markers/genetics , Genome-Wide Association Study , Genotype , Linear Models , Polymorphism, Single Nucleotide/genetics
16.
PLoS One ; 6(8): e23192, 2011.
Article in English | MEDLINE | ID: mdl-21858027

ABSTRACT

BACKGROUND: It has been well established that theoretical kernel for recently surging genome-wide association study (GWAS) is statistical inference of linkage disequilibrium (LD) between a tested genetic marker and a putative locus affecting a disease trait. However, LD analysis is vulnerable to several confounding factors of which population stratification is the most prominent. Whilst many methods have been proposed to correct for the influence either through predicting the structure parameters or correcting inflation in the test statistic due to the stratification, these may not be feasible or may impose further statistical problems in practical implementation. METHODOLOGY: We propose here a novel statistical method to control spurious LD in GWAS from population structure by incorporating a control marker into testing for significance of genetic association of a polymorphic marker with phenotypic variation of a complex trait. The method avoids the need of structure prediction which may be infeasible or inadequate in practice and accounts properly for a varying effect of population stratification on different regions of the genome under study. Utility and statistical properties of the new method were tested through an intensive computer simulation study and an association-based genome-wide mapping of expression quantitative trait loci in genetically divergent human populations. RESULTS/CONCLUSIONS: The analyses show that the new method confers an improved statistical power for detecting genuine genetic association in subpopulations and an effective control of spurious associations stemmed from population structure when compared with other two popularly implemented methods in the literature of GWAS.


Subject(s)
Algorithms , Genome-Wide Association Study/methods , Models, Genetic , Quantitative Trait Loci/genetics , Computer Simulation , Gene Frequency , Genetic Markers/genetics , Genetics, Population/methods , Humans , Linkage Disequilibrium , Polymorphism, Genetic , Reproducibility of Results
17.
Proc Natl Acad Sci U S A ; 107(9): 4270-4, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20142473

ABSTRACT

The availability of reliable genetic linkage maps is crucial for functional and evolutionary genomic analyses. Established theory and methods of genetic linkage analysis have made map construction a routine exercise in diploids. However, many evolutionarily, ecologically, and/or agronomically important species are autopolyploids, with autotetraploidy being a typical example. These species undergo much more complicated chromosomal segregation and recombination at meiosis than diploids. In addition, there is evidence of polyploidy-induced and highly dynamic changes in the structure of the genome. These polysomic characteristics indicate the inappropriateness of the theory and methods of linkage analysis in diploids for use in these species and a gap in the theory and methodology of tetraploid map construction. This paper presents a theoretical model and statistical framework for multilocus linkage analysis in autotetraploids for use with dominant and/or codominant DNA molecular markers. The theory and methods incorporate the essential features of allele segregation and recombination under tetrasomic inheritance and the major challenges in statistical modeling and marker data analysis. We validated the method and explored its statistical properties by intensive simulation study and demonstrated its utility by analysis of AFLP and SSR marker data from an outbred autotetraploid potato population.


Subject(s)
Genetic Linkage , Markov Chains , Models, Theoretical , Algorithms , Biological Evolution , Genetic Markers , Genotype , Likelihood Functions , Ploidies
18.
PLoS Comput Biol ; 5(3): e1000317, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19282978

ABSTRACT

It is well known that Affymetrix microarrays are widely used to predict genome-wide gene expression and genome-wide genetic polymorphisms from RNA and genomic DNA hybridization experiments, respectively. It has recently been proposed to integrate the two predictions by use of RNA microarray data only. Although the ability to detect single feature polymorphisms (SFPs) from RNA microarray data has many practical implications for genome study in both sequenced and unsequenced species, it raises enormous challenges for statistical modelling and analysis of microarray gene expression data for this objective. Several methods are proposed to predict SFPs from the gene expression profile. However, their performance is highly vulnerable to differential expression of genes. The SFPs thus predicted are eventually a reflection of differentially expressed genes rather than genuine sequence polymorphisms. To address the problem, we developed a novel statistical method to separate the binding affinity between a transcript and its targeting probe and the parameter measuring transcript abundance from perfect-match hybridization values of Affymetrix gene expression data. We implemented a Bayesian approach to detect SFPs and to genotype a segregating population at the detected SFPs. Based on analysis of three Affymetrix microarray datasets, we demonstrated that the present method confers a significantly improved robustness and accuracy in detecting the SFPs that carry genuine sequence polymorphisms when compared to its rivals in the literature. The method developed in this paper will provide experimental genomicists with advanced analytical tools for appropriate and efficient analysis of their microarray experiments and biostatisticians with insightful interpretation of Affymetrix microarray data.


Subject(s)
Algorithms , Chromosome Mapping/methods , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Base Sequence , Molecular Sequence Data , Polymorphism, Genetic
19.
BMC Bioinformatics ; 9: 284, 2008 Jun 17.
Article in English | MEDLINE | ID: mdl-18559105

ABSTRACT

BACKGROUND: Affymetrix high density oligonucleotide expression arrays are widely used across all fields of biological research for measuring genome-wide gene expression. An important step in processing oligonucleotide microarray data is to produce a single value for the gene expression level of an RNA transcript using one of a growing number of statistical methods. The challenge for the researcher is to decide on the most appropriate method to use to address a specific biological question with a given dataset. Although several research efforts have focused on assessing performance of a few methods in evaluating gene expression from RNA hybridization experiments with different datasets, the relative merits of the methods currently available in the literature for evaluating genome-wide gene expression from Affymetrix microarray data collected from real biological experiments remain actively debated. RESULTS: The present study reports a comprehensive survey of the performance of all seven commonly used methods in evaluating genome-wide gene expression from a well-designed experiment using Affymetrix microarrays. The experiment profiled eight genetically divergent barley cultivars each with three biological replicates. The dataset so obtained confers a balanced and idealized structure for the present analysis. The methods were evaluated on their sensitivity for detecting differentially expressed genes, reproducibility of expression values across replicates, and consistency in calling differentially expressed genes. The number of genes detected as differentially expressed among methods differed by a factor of two or more at a given false discovery rate (FDR) level. Moreover, we propose the use of genes containing single feature polymorphisms (SFPs) as an empirical test for comparison among methods for the ability to detect true differential gene expression on the basis that SFPs largely correspond to cis-acting expression regulators. The PDNN method demonstrated superiority over all other methods in every comparison, whilst the default Affymetrix MAS5.0 method was clearly inferior. CONCLUSION: A comprehensive assessment of seven commonly used data extraction methods based on an extensive barley Affymetrix gene expression dataset has shown that the PDNN method has superior performance for the detection of differentially expressed genes.


Subject(s)
Algorithms , Databases, Genetic , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/methods , Proteome/metabolism , Signal Transduction/physiology , Reproducibility of Results , Sensitivity and Specificity
20.
Mol Biol Evol ; 24(11): 2556-65, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17846103

ABSTRACT

Expression divergence of duplicate genes is widely believed to be important for their retention and evolution of new function, although the mechanism that determines their expression divergence remains unclear. We use a genetical genomics approach to explore divergence in genetical control of yeast duplicate genes created by a whole-genome duplication that occurred about 100 MYA and those with a younger duplication age. The analysis reveals that duplicate genes have a significantly higher probability of sharing common genetic control than pairs of singleton genes. The expression quantitative trait loci (eQTLs) have diverged completely for a high proportion of duplicate pairs, whereas a substantially larger proportion of duplicates share common regulatory motifs after 100 Myr of divergent evolution. The similarity in both genetical control and cis motif structure for a duplicate pair is a reflection of its evolutionary age. This study reveals that up to 20% of variation in expression between ancient duplicate gene pairs in the yeast genome can be explained by both cis motif divergence (approximately 8%) and by trans eQTL divergence (approximately 10%). Initially, divergence in all 3 aspects of cis motif structure, trans-genetical control, and expression evolves coordinately with the coding sequence divergence of both young and old duplicate pairs. These findings highlight the importance of divergence in both cis motif structure and trans-genetical control in the diverse set of mechanisms underlying the expression divergence of yeast duplicate genes.


Subject(s)
Gene Expression Regulation, Fungal , Genes, Duplicate/genetics , Regulatory Sequences, Nucleic Acid/genetics , Yeasts/genetics , Genetic Variation , Genome, Fungal , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...