Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Sci Total Environ ; 739: 139882, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32540656

ABSTRACT

Land impaired by mining activity can be restored to a productive and healthy state through a variety of reclamation methods. Fertilization is one effective method to improve soil fertility and microbial activity. However, the effects of fertilization and reclamation time on bacterial communities in reclaimed soil remain unclear. Here, we hypothesized that both fertilization and reclamation time could promote restoration of reclaimed soil. To test this, soil properties and bacterial communities in a reclaimed coal mining subsidence area were investigated under different fertilizer regimes and different reclamation times. Compared with no fertilization treatment, fertilization rapidly improved the soil nutrients and bacterial α-diversity, both of which exhibited no significant differences between chemical fertilizer and organic fertilizer. With increasing of reclamation time, the soil nutrient levels (soil organic matter, available nitrogen, available phosphorus, available potassium) and the bacterial diversity increased. Meanwhile, the relative abundances of Proteobacteria, Actinobacteria and Bacteroidetes increased, and the relative abundances of Acidobacteria, Chloroflexi and Nitrospirae decreased. Compared with the 1-year and 3-year reclaimed soils, the soil nutrients and bacterial community structure in the 7-year reclaimed soils were more similar to those in the undisturbed soils. In conclusion, reclamation time is the main driving force for the restoration of soil properties and bacterial communities in mining areas, and fertilization can shorten the recovery time of the reclaimed soil.


Subject(s)
Coal Mining , Soil , Bacteria , Fertilizers , Mining , Soil Microbiology
2.
Environ Sci Technol ; 52(4): 2271-2277, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29400052

ABSTRACT

Quantifying metal and nanoparticle (NP) biouptake and distribution on an individual cellular basis has previously been impossible, given available techniques which provide qualitative data that are laborious to acquire and prone to artifacts. Quantifying metal and metal NP uptake and loss processes in environmental organisms will lead to mechanistic understanding of biouptake and improved understanding of potential hazards and risks of metals and NPs. In this work, we present a new technique, single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), which allows quantification of metal concentrations on an individual cell basis down to the attogram (ag) per cell level. We present data validating the novel method, along with the mass of metal per cell. Finally, we use SC-ICP-MS, with ancillary cell counting methods, to quantify the biouptake and strong sorption and distribution of both dissolved Au and Au NPs in a freshwater alga (Cyptomonas ovate). The data suggests differences between dissolved and NP uptake and loss. In the case of NPs, there was a dose and time dependent uptake, but individual cellular variations; at the highest realistic exposure conditions used in this study up to 40-50% of cells contained NPs, while 50-60% of cells did not.


Subject(s)
Metal Nanoparticles , Fresh Water , Gold , Mass Spectrometry , Particle Size
3.
Sci Total Environ ; 537: 479-86, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26322596

ABSTRACT

Improved detection and characterization of nanomaterials (NMs) in complex environmental media requires the development of novel sampling approaches to improve the detection limit to be close to environmentally realistic concentrations. Transmission electron microscopy (TEM) is an indispensable metrological tool in nanotechnology and environmental nanoscience due to its high spatial resolution and analytical capabilities when coupled to spectroscopic techniques. However, these capabilities are hampered by the conventional sample preparation methods, which suffer from low NM recovery. The current work presents a validated, fully quantitative sampling technique for TEM that overcomes conventional sample preparation shortcomings, and thus enables the use of TEM for measurement of particle number concentration and their detection in complex media at environmentally realistic concentrations. This sampling method is based on ultracentrifugation of NMs from suspension onto a poly-l-lysine (PLL) functionalized TEM grid, using active deposition (by ultracentrifugation) and retention (by PLL interactions with NM surface) of NMs on the substrate, enabling fully quantitative analysis. Similar analysis with AFM was satisfactory in simple media but the lack of chemical-selectivity of AFM limits its applicability for the detection of NMs in complex environmental samples. The sampling approach was validated using both citrate- and PVP-coated AuNMs in pure water, which demonstrated an even distribution of NM on the TEM grid and high NM recovery (80-100%) at environmentally relevant NM concentrations (ca. 0.20-100 µg L(-1)). The applicability of the sampling method to complex environmental samples was demonstrated by the quantification of particle number concentration of AuNMs in EPA soft water (with and without Suwannee River fulvic acid) and lake water. This sample preparation approach is also applicable to other types of NMs with some modifications (e.g. centrifugation force and time) to insure full sample recovery. This TEM sampling method is key to the accurate quantification of NM number concentration, and therefore to improving our understanding of environmental fate, behavior, effects and dose of NMs.


Subject(s)
Environmental Pollutants/analysis , Microscopy, Electron/methods , Nanostructures/analysis , Environmental Monitoring/methods
4.
Sci Total Environ ; 535: 45-53, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25432129

ABSTRACT

The dynamic nature of nanoparticle (NP) agglomeration behavior is of paramount interest to many current studies in environmental nanoscience and nano(eco)toxicology because agglomeration affects the NP bioavailability and toxicity. The present study investigates the surface charge and agglomeration behavior of TiO2 NPs in four different ecotoxicological media (OECD algae, OECD L_variegatus, hardwater and plant media) and two different electrolytes KCl (200 mM) and CaCl2 (50 mM). TiO2 NPs were positively charged, and the zeta potential varied from +1.9 mV in hardwater (at pH7.1) to +24.5 mV in CaCl2 electrolyte (at pH7.4) in all media except algae media, where the zeta potential was -6.7 mV (at pH7.7). Despite the differences in the pH and the surface charge of TiO2 NPs in the different media, an immediate agglomeration of the NPs in all standard ecotoxicological media was observed with aggregate sizes in the micrometer scale, as the measured zeta potentials were insufficient to prevent TiO2 NP agglomeration. The isoelectric point (pHiep) of TiO2 NPs in the studied media varied in the range (6.8-7.6), which was attributed to preferential association of anions and cations to TiO2; that is the pHiep decreases with the increased concentration of Cl and increases with the increased concentrations of Na and Mg. Despite the complexity of the ecotoxicological media and the presence of a mixture of different monovalent and divalent electrolytes, the agglomeration kinetics in the media follows the DVLO theory where two distinct agglomeration rates (slow, reaction limited regime and fast, diffusion limited regime) were observable. The critical coagulation concentration (CCC) of TiO2 NPs in the ecotoxicological media varied from 17.6 to 54.0% v/v standard media in UHPW, due to differences in media pH and TiO2 NP surface charge. In the ecotoxicological media (hardwater, L-variegatus and plant), where TiO2 NPs are positively charged, the CCC decrease with the increased divalent anions (act as counter ions) concentration in the media, again in good agreement with the DLVO theory.


Subject(s)
Models, Chemical , Nanoparticles/chemistry , Titanium/chemistry , Anions , Cations , Ecotoxicology , Electrolytes , Hydrogen-Ion Concentration , Kinetics , Nanoparticles/toxicity , Particle Size , Titanium/toxicity
5.
Sci Total Environ ; 502: 344-53, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25262296

ABSTRACT

Silver nanoparticles (Ag NPs) are susceptible to transformations in environmental and biological media such as aggregation, oxidation, dissolution, chlorination, sulfidation, formation/replacement of surface coatings following interaction with natural organic matter (NOM). This paper investigates the impact of surface coating and Suwannee River fulvic acid (SRFA) on the transformations and behavior of Ag NPs (citrate coated and Tween coated; cit-Ag NPs and Tween-Ag NPs, respectively), following reaction with different concentrations of Na2S solution (as a source of sulfide species, H2S and HS(-)). These transformations and the dominant mechanisms of transformations were investigated using UV-vis and scanning transmission electron microscopy coupled with electron energy loss spectroscopy. Here, we have shown that Ag NP surface coating impacts their dissolution following dilution in ultrahigh purity water, with higher extent of dissolution of Tween-Ag NPs compared with cit-Ag NPs. Tween-Ag NPs are susceptible to dissolution following their sulfidation at low S/Ag molar ratio. Suwannee River fulvic acid (SRFA) slows down the dissolution of Tween-Ag NPs at low sulfide concentrations and reduces the aggregation of cit-Ag NP in the presence of sodium sulfide. Sulfidation appears to occur by direct interaction of sulfide species with Ag NPs rather than by indirect reaction of sulfide with dissolved Ag species subsequent to dissolution. Furthermore, the sulfidation process results in the formation of partially sulfidized Ag NPs containing unreacted (metallic) subgrains at the edge of the NPs for Tween-Ag NPs in the presence of high sulfide concentration (2000nM Na2S), which occurred to less extent at lower Na2S concentration for Tween-Ag NPs and at all concentrations of Na2S for cit-Ag NPs. Thus, sulfidized Ag NPs may preserve some of the properties of the Ag NPs such as their potential to shed Ag(+) ions and their toxic potential of Ag NPs.


Subject(s)
Citric Acid/chemistry , Metal Nanoparticles/chemistry , Polysorbates/chemistry , Sulfides/chemistry , Water Pollutants, Chemical/chemistry , Microscopy, Electron, Scanning Transmission , Models, Chemical , Silver/chemistry
6.
Environ Sci Technol ; 48(12): 6891-8, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24823240

ABSTRACT

A Serratia sp. bacterium manufactures amorphous calcium phosphate nanominerals (BHAP); this material has shown increased sorption capacity for divalent radionuclide capture. When heat-treated (≥450 °C) the cell biomass is removed and the biominerals are transformed to hydroxyapatite (HAP). Using a multimethod approach, we have elucidated both the site preferences and stability of analogue radionuclide incorporation for Sr, Co, Eu, and U. Strontium incorporates within the bulk amorphous inorganic phase of BHAP; however, once temperature modified to crystalline HAP, bonding was consistent with Sr substitution at the Ca(1) and/or Ca(2) sites. Cobalt incorporation occurs within the bulk inorganic amorphous phase of BHAP and within the amorphous grain boundaries of HAP. Europium (an analogue for trivalent actinides) substituted at the Ca(2) and/or the Ca(3) position of tricalcium phosphate, a known component of HAP grain boundaries. Uranium was surface complexed with no secondary minerals detected. With multiple sites for targeted radionuclide incorporation, high loadings, and good stability against remobilization, BHAP is shown to be a potential material for the remediation of aqueous radionuclide in groundwater.


Subject(s)
Bacteria/metabolism , Calcium Phosphates/metabolism , Minerals/metabolism , Nanoparticles/chemistry , Radioisotopes/isolation & purification , Adsorption , Biodegradation, Environmental , Durapatite/chemistry , Groundwater/chemistry , Ions , Nanoparticles/ultrastructure , Particle Size , Water Pollutants, Radioactive/isolation & purification , X-Ray Absorption Spectroscopy , X-Ray Diffraction
7.
Environ Sci Process Impacts ; 16(6): 1338-47, 2014 May.
Article in English | MEDLINE | ID: mdl-24668140

ABSTRACT

Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. <20 nm). However, the high capabilities of microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. <10%), formation of aggregates during the drying process, and thus, the complete misrepresentation of the NP suspensions under consideration. This paper presents a validated quantitative sampling technique for atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of NPs; both are key requirements for the implementation of the European Commission recommendation for definition of nanomaterials.


Subject(s)
Microscopy, Atomic Force/methods , Nanoparticles/analysis , Water Pollutants, Chemical/analysis , Particle Size , Suspensions
8.
Sci Total Environ ; 454-455: 119-31, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23542485

ABSTRACT

The dynamic nature of nanoparticle (NP) aggregation behavior is of paramount interest to many current studies in environmental and toxicological nanoscience. The present study seeks to elucidate the influence that different electrolytes have on the aggregation of citrate-coated silver NPs (cit-AgNPs). The use of both UV-vis spectroscopy and dynamic light scattering (DLS, both z-average hydrodynamic diameter (z-dh) and size distribution analysis data) allowed improvement in the data quality and interpretation as compared to other studies using only DLS and reporting solely the z-dh, as the change in the z-dh can be related to analytical errors and uncertainties rather than only aggregation or dissolution of NPs. Divalent cations (CaCl2, Ca(NO3)2, CaSO4, MgCl2 and MgSO4) have stronger influence (ca. 50-65 fold) on aggregation of cit-AgNPs as compared to monovalent cations (NaCl, NaNO3, Na2SO4), as expected. For electrolytes with monovalent cations, there was no specific ion effect of nitrate and sulfate anions. However, the addition of chloride anions resulted in enhanced apparent aggregation, possibly due to the formation of AgCl NPs that sorb/attach to the surface of cit-AgNPs. Suwannee River fulvic acid enhances the stability of cit-AgNPs and shifts the critical coagulation concentrations to higher electrolyte concentrations for all types of electrolytes. Aggregation kinetics in the presence of mixture of monovalent and divalent cations is additive and controlled by the dominant cations. An empirical formula (αmixture=αNa+(50 to 65)Ca) is proposed that reproduces the effect of mixtures of electrolytes in the presence of humic substances and cations that can be used to help predict the aggregation behavior of cit-AgNPs in environmental and ecotoxicological media.

9.
Environ Sci Technol ; 46(11): 6134-42, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22594655

ABSTRACT

This study aims to rationalize the variability in the measured size of nanomaterials (NMs) by some of the most commonly applied techniques in the field of nano(eco)toxicology and environmental sciences, including atomic force microscopy (AFM), dynamic light scattering (DLS), and flow field-flow fractionation (FlFFF). A validated sample preparation procedure for size evaluation by AFM is presented, along with a quantitative explanation of the variability of measured sizes by FlFFF, AFM, and DLS. The ratio of the z-average hydrodynamic diameter (d(DLS)) by DLS and the particle height by AFM (d(AFM)) approaches 1.0 for monodisperse samples and increases with sample polydispersity. A polydispersity index of 0.1 is suggested as a suitable limit above which DLS data can no longer be interpreted accurately. Conversion of the volume particle size distribution (PSD) by FlFFF-UV to the number PSD reduces the differences observed between the sizes measured by FlFFF (d(FlFFF)) and AFM. The remaining differences in the measured sizes can be attributed to particle structure (sphericity and permeability). The ratio d(FlFFF)/d(AFM) approaches 1 for small ion-coated NMs, which can be described as hard spheres, whereas d(FlFFF)/d(AFM) deviates from 1 for polymer-coated NMs, indicating that these particles are permeable, nonspherical, or both. These findings improve our understanding of the rather scattered data on NM size measurements reported in the environmental and nano(eco)toxicology literature and provide a tool for comparison of the measured sizes by different techniques.


Subject(s)
Analytic Sample Preparation Methods , Fractionation, Field Flow/methods , Light , Microscopy, Atomic Force/methods , Nanostructures/chemistry , Particle Size , Scattering, Radiation , Calibration , Gold/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Reproducibility of Results , Ultracentrifugation
10.
Sci Total Environ ; 434: 171-85, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22417883

ABSTRACT

An assessment is made of the role of riverine colloids in macronutrient (nitrogen, phosphorus and carbon), metal and trace element partitioning and transport, for five rivers in the Ribble and Wyre catchments in north-western England, under baseflow/near-baseflow conditions. Cross-flow ultrafiltration was used to separate colloidal (<0.45 µm >1 kDa) and truly dissolved (<1 kDa) fractions from river water. Clear patterns were observed, along the upland-lowland land use continuum, in the partitioning and transport of macronutrients and metals between the colloidal, truly dissolved and acid-available particulate (>0.45 µm, suspended) fractions. Of these operationally-defined fractions measured, colloids were generally more important for both macronutrient and metal transport in the upland than in the lowland rivers. The results suggest that organic moieties in truly dissolved form from sewage effluent may have a greater capacity to chelate metals. Organic-rich colloids in the upland moorlands and metal oxide colloidal precipitates in the industrial rivers had a higher capacity for binding metals than the colloidal fractions in the urban and agricultural lowland rivers. Aggregation of these colloids may provide an important mechanism for formation of larger suspended particulates, accounting for a higher degree of metal enrichment in the acid-available particulate fractions of the upland moorland and lowland industrial rivers, than in the lowland agricultural and urban rivers. This mechanism of transfer of contaminants to larger aggregates via colloidal intermediates, known as 'colloidal pumping' may also provide a mechanism for particulate P formation and the high proportion of P being transported in the particulate fraction in the uplands. The cross-flow ultrafiltration data also allowed refinement of partition coefficients, by accounting for colloids within the solids phase and replacing the filtered (<0.45 µm) fraction with the truly dissolved (<1 kDa) concentrations. These provided a clearer description of the controls on metal and P partitioning along the upland-lowland continuum.

11.
Environ Sci Technol ; 45(16): 6985-90, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21714547

ABSTRACT

Biomineral hydroxyapatite (Bio-HAp) produced by Serratia sp. has the potential to be a suitable material for the remediation of metal contaminated waters and as a radionuclide waste storage material. Varying the Bio-HAp manufacturing method was found to influence hydroxyapatite (HAp) properties and consequently the uptake of Sr(2+) and Co(2+). All the Bio-HAp tested in this study were more efficient than the commercially available hydroxyapatite (Com-HAp) for Sr(2+) and Co(2+) uptake. For Bio-HAp the uptake for Sr(2+) and Co(2+) ranged from 24 to 39 and 29 to 78 mmol per 100 g, respectively. Whereas, the uptake of Sr(2+) and Co(2+) by Com-HAp ranged from 3 to 11 and 4 to 18 mmol per 100 g, respectively. Properties that increased metal uptake were smaller crystallite size (<40 nm) and higher surface area (>70 m(2) g(-1)). Organic content which influences the structure (e.g., crystallite arrangement, size and surface area) and composition of Bio-HAp was also found to be important in Sr(2+) and Co(2+) uptake. Overall, Bio-HAp shows promise for the remediation of aqueous metal waste especially since Bio-HAp can be synthesized for optimal metal uptake properties.


Subject(s)
Cobalt/metabolism , Durapatite/metabolism , Serratia/metabolism , Strontium/metabolism , Biodegradation, Environmental , Crystallization , Ion Exchange , Ions , Microscopy, Electron, Scanning , Surface Properties , Water/chemistry
12.
J Chromatogr A ; 1218(27): 4078-103, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21621214

ABSTRACT

The use of flow field flow fractionation (FlFFF) for the separation and characterization of natural colloids and nanoparticles has increased in the last few decades. More recently, it has become a popular method for the characterization of manufactured nanoparticles. Unlike conventional filtration methods, FlFFF provides a continuous and high-resolution separation of nanoparticles as a function of their diffusion coefficient, hence the interest for use in determining particle size distribution. Moreover, when coupled to other detectors such as inductively coupled plasma-mass spectroscopy, light scattering, UV-absorbance, fluorescence, transmission electron microscopy, and atomic force microscopy, FlFFF provides a wealth of information on particle properties including, size, shape, structural parameters, chemical composition and particle-contaminant association. This paper will critically review the application of FlFFF for the characterization of natural colloids and natural and manufactured nanoparticles. Emphasis will be given to the detection systems that can be used to characterize the nanoparticles eluted from the FlFFF system, the obtained information and advantages and limitation of FlFFF compared to other fractionation and particle sizing techniques. This review will help users understand (i) the theoretical principles and experimental consideration of the FlFFF, (ii) the range of analytical tools that can be used to further characterize the nanoparticles after fractionation by FlFFF, (iii) how FlFFF results are compared to other analytical techniques and (iv) the range of applications of FlFFF for natural and manufactured NPs.


Subject(s)
Colloids/chemistry , Fractionation, Field Flow/methods , Models, Chemical , Nanoparticles/chemistry , Colloids/analysis , Fresh Water , Humic Substances , Nanoparticles/analysis , Particle Size
13.
Sci Total Environ ; 408(23): 5940-50, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20858563

ABSTRACT

For the first time the specific fluorescent characteristics of organic carbon (OC) in sequentially filtered cave dripwater samples have been studied and the proportions of organic carbon in each size fraction quantified. We examined the effects of pH, temperature and filtration on the fluorescent properties of OC sampled from four drip points in different seasons. Dripwaters were sampled from both normal (pH 7.5-8.5) and hyper-alkaline (pH 9-13) drip points in Poole's Cavern, Buxton, UK, which provides a model system for understanding the effects of pH on the chemical properties of OC. At high-pH values, charge stabilisation of OC is greatly enhanced, resulting in 10-20 times more coarse colloidal and particulate (>100 nm) organic carbon than in lower pH dripwaters; indicating that destabilisation (e.g. charge shielding) of colloidal OC is an important process control on the transmission of OC in cave dripwaters at near-neutral pH. OC fluorescence in high-pH dripwaters exhibited a high degree of pH sensitivity between pH 10 and 12, consistent with substantial changes in the coordination or neighbouring environment of fluorescent acidic functional groups. Inner-filter effects (IFE) associated with the coarse colloidal and particulate fraction of OM mask the true fluorescent signal, so that size fractionation is necessary to obtain a signal which is correlated with the concentration of organic carbon. Fluorescence intensities in the samples studied were best correlated with organic carbon with a dimension <100 nm. These results have important implications for the use of fluorescence as a tracer in hydrogeological studies.


Subject(s)
Carbon/chemistry , Fluorescence , Water Pollutants, Chemical/chemistry , Filtration , Geological Phenomena , Hydrogen-Ion Concentration , Temperature
14.
Environ Pollut ; 158(12): 3490-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20430496

ABSTRACT

An embryo development assay using a common test organism, the edible mussel (Mytilus galloprovincialis), exposed to both Fe(2)O(3) nanoparticles and soluble FeCl(3) at 3 acidic pHs, has provided evidence for the following: (1) CO(2) enriched seawater adjusted to pH projections for carbon capture leakage scenarios (CCS) significantly impaired embryo development; (2) under natural pH conditions, no significant effect was detected following exposure of embryos to Fe, no matter if in nano- or soluble form; (3) at pH of natural seawater nano-Fe particles aggregate into large, polydisperse and porous particles, with no biological impact detected; (4) at pH 6 and 7, such aggregates may moderate the damage associated with CO(2) enrichment as indicated by an increased prevalence of normal D-shell larvae when nano-Fe was present in the seawater at pH 7, while soluble iron benefited embryo development at pH 6, and (5) the observed effects of iron on pH-induced development toxicity were concentration dependent.


Subject(s)
Carbon Dioxide/chemistry , Ferric Compounds/toxicity , Mytilus/embryology , Nanoparticles/toxicity , Animals , Embryonic Development/physiology , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Mytilus/metabolism , Nanoparticles/chemistry , Seawater/chemistry
16.
Sci Total Environ ; 386(1-3): 93-102, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17644161

ABSTRACT

Atomic force microscopy (AFM) was used to image and quantify natural nanoparticles (prefiltered <25 nm) from three different freshwater sites (Vale Lake, Bailey Brook and Tern Rivers). Four fractions were analysed by AFM; the prefiltered fraction (<25 nm) and three fractions collected after separation of this prefiltered sample by flow field-flow fractionation (FlFFF) which corresponds to material which has size ranges of <4.2 nm, 4.2-15.8 nm and 15.8-32.4 nm, as determined by FlFFF theory. The large majority of materials in all samples appeared as <3 nm nanoparticles, nearly spherical and rich in chromophores active at 254 nm UV, which thus correspond to natural organic matter. However, nanoparticles were also imaged up to slightly more than 25 nm in size, indicating a slight disagreement in sizing between filtration and FlFFF. In addition, some particles in certain fractions were found to be covered with a thin film of less than 0.5-1.0 nm. Substantial differences between sites were observed.


Subject(s)
Colloids/chemistry , Fractionation, Field Flow/methods , Fresh Water/chemistry , Microscopy, Atomic Force/methods , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Colloids/analysis , Ferric Compounds/analysis , Humic Substances/analysis , Nanoparticles/ultrastructure , Particle Size , Water Pollutants, Chemical/analysis
17.
Environ Sci Technol ; 41(4): 1111-7, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593707

ABSTRACT

Flow-field flow fractionation (FIFFF) coupled to a UV detector and to atomic force microscopy (AFM) has been used, for the first time, to characterize ultrafine natural colloids (<5 nm) from selected freshwaters. FIFFF-UV measures a "weight diffusion coefficient distribution" and the corresponding "weight hydrodynamic diameter distribution" was calculated by applying FIFFF theory and the Stokes-Einstein equation. In addition, FIFFF has been used to prepare fractions of very narrow size range for AFM analysis. AFM measures number distribution of particle height (related to radius), and these were calculated. Both raw and transformed data show good agreement between the techniques, with conversion of the UV data to a number-weighted distribution giving better agreement and reduced errors. The small differences between the corrected data from UV analysis and the raw AFM data are either due to the fundamental differences in the analytical techniques, that is, measurement of hydrodynamic properties (FIFFF) or properties after sorption to a solid phase (AFM), or are due to the assumptions of the Stokes-Einstein equation not being met, that is, the fine natural colloids are not spherical or permeable. The methodology offers a means of quantifying fine colloid nonsphericity and permeability.


Subject(s)
Colloids/analysis , Environmental Monitoring , Fractionation, Field Flow , Fresh Water , Microscopy, Atomic Force , Particle Size , United Kingdom
18.
Environ Sci Technol ; 41(4): 1339-44, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17593739

ABSTRACT

Nanoscale surface films are known to develop on surfaces exposed to natural waters and have potential impacts on many environmental processes. A new method using atomic force microscopy is presented which physically removes the developed film in a defined area and then quantifies the difference in height between the film and the area where the film has been removed. The difference gives the absolute thickness of the surface film, which has not previously been measured. Suwannee River humic acid was exposed to substrates, and the surface film thickness as a function of pH and exposure time was measured. Discrete and very small colloids in the range 1-5 nm were observed as expected, and these sat on a coherent surface film, notthe original mica substrate. Low pH values of 2 gave rise to relatively thick surface films of about3 nm, although these films were not continuous at higher pH values. At pH 4.8, the film thickness increased with exposure time up to about 5 h and did not subsequently increase. The maximum film thickness measured was about 1 nm at that pH. The method is applicable to the measurement of many environmental surfaces, although resolution will depend on the substrate and film roughness.


Subject(s)
Humic Substances/analysis , Water Pollutants/analysis , Aluminum Silicates , Colloids , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Nanotechnology
19.
Anal Chem ; 78(11): 3609-15, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16737214

ABSTRACT

This paper reports the first application of a combined approach utilizing split-flow thin-cell (SPLITT) separation to size fractionate natural aquatic colloids and particles collected from freshwater samples. No sample preconcentration was performed although some samples were investigated after alteration of the ambient pH. The unfractionated and fractionated samples were analyzed by scanning electron microscopy (SEM), environmental SEM, and 3D excitation emission matrix fluorescence. Qualitative and quantitative results by microscopy indicated that SPLITT produces well-resolved fractionations at appropriate sizes but with some perturbation of the sample. In addition, tryptophan-like fluorescence was shown to be caused by different organic moieties compared with humic-like and fulvic-like fluorescence. Tryptophan-like fluorescence intensity is found mainly in the particulate material but is not pH dependent, while humic- and fulvic-like fluorescence intensities are dependent on pH but not on size. Fulvic-like fluorescence intensity normalized to absorbance, related to fluorescence efficiency and molar mass, varies with size.

20.
Water Res ; 40(10): 2075-83, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16697027

ABSTRACT

Amino acid-like fluorescence has been used as an indicator of biological activity in wastewater effluent and in natural waters, and can be detected using fluorescence spectroscopy. Little or no work has been able to state conclusively that these so called 'amino acid-like' fluorophores are associated with proteins present as a result of bacterial activity. This work aims to ascertain whether bacteria are one possible cause of these 'amino acid-like' peaks observed in natural waters. In addition, fluorescence derived solely from one bacterial source was determined as a function of the growth time and temperature. The bacterium Pseudomonas aeruginosa was isolated from the urban River Tame, Birmingham, UK, and planktonic bacteria were grown in sterile, sealed glass jars, in 100 ml growth media. Bacteria were grown at 11, 25 and 37 degrees C, over a maximum of 10 days. A 3D Excitation-Emission Matrix (EEM) plot was generated from fluorescence analysis of the samples. Both tryptophan and tyrosine-like fluorescence, resembling that observed in natural and waste waters, was observed in these samples, indicating that observed fluorescence signals from aquatic systems in the literature were of biotic origin. Significant differences in fluorescence signals were obtained from planktonic cells grown at different temperatures. At 25 and 37 degrees C, cells were found to produce predominantly tryptophan-like fluorescence, with some tyrosine-like fluorescence also detected. A further unknown fluorophore was also detected (emission wavelength of approximately 460 nm, with three excitation centres at 225, 260 and 390 nm), likely to be a bacterially produced metabolite. At 11 degrees C, a more environmentally realistic temperature in temperate environments, quantitative and qualitative differences were observed in fluorescence signals when compared with the higher temperatures, indicating that laboratory observations conducted at higher temperatures may not be easily used to interpret environmental processes.


Subject(s)
Bacterial Proteins/analysis , Environmental Monitoring/methods , Fluorescence , Plankton/growth & development , Pseudomonas aeruginosa/growth & development , Water Microbiology/standards , Plankton/chemistry , Pseudomonas aeruginosa/chemistry , Spectrometry, Fluorescence , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...