Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 8(10): e14448, 2020 05.
Article in English | MEDLINE | ID: mdl-32441493

ABSTRACT

Hypertension plays an important role in the development and progression of chronic kidney disease. Studies to date, with mineralocorticoid receptor antagonists (MRA), have demonstrated varying degrees of results in modifying the development of renal fibrosis. This study aimed to investigate whether treatment with a MRA commenced following the establishment of hypertension, a situation more accurately representing the clinical setting, modified the progression of renal fibrosis. Using male Cyp1a1Ren2 rats (n = 28), hypertension was established by addition of 0.167% indole-3-carbinol (w/w) to the rat chow, for 2 weeks prior to treatment. Rats were then divided into normotensive, hypertensive (H), or hypertensive with daily oral spironolactone treatment (H + SP) (human equivalent dose 50 mg/day). Physiological data and tissue were collected after 4 and 12 weeks for analysis. After 4 weeks, spironolactone had no demonstrable effect on systolic blood pressure (SBP), proteinuria, or macrophage infiltration in the renal cortex. However, glomerulosclerosis and renal cortical fibrosis were significantly decreased. Following 12 weeks of spironolactone treatment, SBP was lowered (not back to normotensive levels), proteinuria was reduced, and the progression of glomerulosclerosis and renal cortical fibrosis was significantly blunted. This was associated with a significant reduction in macrophage and myofibroblast infiltration, as well as CTGF and pSMAD2 expression. In summary, in a model of established hypertension, spironolactone significantly blunted the progression of renal fibrosis and glomerulosclerosis, and downregulated the renal inflammatory response, which was associated with reduced proteinuria, despite only a partial reduction in systolic blood pressure. This suggests a blood pressure independent effect of MRA on renal fibrosis.


Subject(s)
Fibrosis/prevention & control , Kidney Diseases/prevention & control , Spironolactone/pharmacology , Aldosterone/metabolism , Animals , Blood Pressure/drug effects , Disease Models, Animal , Fibrosis/etiology , Fibrosis/genetics , Fibrosis/pathology , Hypertension/genetics , Kidney Diseases/etiology , Kidney Diseases/pathology , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Rats , Rats, Transgenic
2.
PLoS One ; 14(8): e0220837, 2019.
Article in English | MEDLINE | ID: mdl-31404095

ABSTRACT

OBJECTIVES: Is global longitudinal strain (GLS) a more accurate non-invasive measure of histological myocardial fibrosis than left ventricular ejection fraction (LVEF) in a hypertensive rodent model. BACKGROUND: Hypertension results in left ventricular hypertrophy and cardiac dysfunction. Speckle-tracking echocardiography has emerged as a robust technique to evaluate cardiac function in humans compared with standard echocardiography. However, its use in animal studies is less clearly defined. METHODS: Cyp1a1Ren2 transgenic rats were randomly assigned to three groups; normotensive, untreated hypertensive or hypertensive with daily administration of spironolactone (human equivalent dose of 50 mg/day). Cardiac function and interstitial fibrosis development were monitored for three months. RESULTS: The lower limit of normal LVEF was calculated to be 75%. After three months hypertensive animals (196±21 mmHg systolic blood pressure (SBP)) showed increased cardiac fibrosis (8.8±3.2% compared with 2.4±0.7% % in normals), reduced LVEF (from 81±2% to 67±7%) and impaired myocardial GLS (from -17±2% to -11±2) (all p<0.001). Myocardial GLS demonstrated a stronger correlation with cardiac interstitial fibrosis (r2 = 0.58, p<0.0001) than LVEF (r2 = 0.37, p<0.006). Spironolactone significantly blunted SBP elevation (184±15, p<0.01), slowed the progression of cardiac fibrosis (4.9±1.4%, p<0.001), reduced the decline in LVEF (72±4%, p<0.05) and the degree of impaired myocardial GLS (-13±1%, p<0.01) compared to hypertensive animals. CONCLUSIONS: This study has demonstrated that, myocardial GLS is a more accurate non-invasive measure of histological myocardial fibrosis compared to standard echocardiography, in an animal model of both treated and untreated hypertension. Spironolactone blunted the progression of cardiac fibrosis and deterioration of myocardial GLS.


Subject(s)
Endomyocardial Fibrosis/physiopathology , Hypertension/physiopathology , Animals , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Echocardiography , Endomyocardial Fibrosis/drug therapy , Endomyocardial Fibrosis/etiology , Endomyocardial Fibrosis/pathology , Hypertension/complications , Hypertension/diagnostic imaging , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/physiopathology , Male , Rats , Rats, Transgenic , Spironolactone/therapeutic use , Stroke Volume , Ventricular Function, Left
3.
Comp Med ; 68(5): 360-366, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30185285

ABSTRACT

Hypertension is a leading risk factor for cardiovascular and chronic kidney disease. A new rodent model (transgenic male Cyp1a1-Ren2 rats) provides reversible induction of hypertension through the addition of indole-3-carbinol (I3C) to the diet, without the need for surgical intervention, thus giving researchers control over both the onset of hypertension and its magnitude (I3C dose-dependency). We here report the breeding performance and productivity of Cyp1a1-Ren2 rats. Despite being transgenic, these animals proved to be efficient breeders. In addition to confirming inducible and reversible dose-dependent hypertension (by using I3C doses of 0.125%, 0.167%, and 0.25% [w/w] in the diet for 14 d, followed by normal chow for 4 d), we demonstrated that hypertension can be sustained chronically (14 wk) by continuous dosing with I3C (0.167% [w/w]) in the diet. In chronically dosed male rats, systolic blood pressure continued to rise, from 173 ± 11 mm Hg after 1 mo to 196 ± 19 mm Hg after 3 mo, with no adverse phenotypic features observed. In conclusion, Cyp1a1-Ren2 rats are a useful animal model to investigate hypertension-induced end-organ damage and potential new therapeutic targets to manage hypertension.


Subject(s)
Disease Models, Animal , Hypertension/chemically induced , Rats , Animals , Breeding , Cytochrome P-450 CYP1A1/genetics , Female , Indoles , Male , Rats, Transgenic , Renin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...