Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Enzymol ; 533: 259-63, 2013.
Article in English | MEDLINE | ID: mdl-24182931

ABSTRACT

Recombinant protein expression using eukaryotic expression systems has certain advantages, such as addition of posttranslational modifications that help protein stability and activity. Asparagine-linked sugar attachment is one of the most common posttranslation modifications. However, sugar modification can impede the growth of high-quality protein crystals for structural studies using X-ray crystallography. To overcome this problem, consensus sites of N-linked attachments can be mutated into other similar residues, such as aspartic acid. Alternatively, enzymatic deglycosylation can be used to remove sugars. Peptide-N-Glycosidase F (PNGase F; EC 3.5.1.52) and Endoglycosidase H (Endo H; EC 3.2.1.96) are the most popular enzymes for this purpose.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/metabolism , Protein Engineering/methods , Animals , CHO Cells , Cricetulus , Crystallography, X-Ray , Glycosylation , HEK293 Cells , Humans , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Protein Engineering/instrumentation , Recombinant Proteins/metabolism
2.
Nat Genet ; 44(11): 1249-54, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23023332

ABSTRACT

Elevated transforming growth factor (TGF)-ß signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-ß signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-ß in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-ß activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-ß signaling cascades and higher expression of TGF-ß-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-ß signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Subject(s)
Aortic Aneurysm/genetics , Arachnodactyly/genetics , Craniosynostoses/genetics , DNA-Binding Proteins , Marfan Syndrome/genetics , Proto-Oncogene Proteins , Transforming Growth Factor beta , Animals , Arachnodactyly/metabolism , Cells, Cultured , Craniosynostoses/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblasts , Humans , Loeys-Dietz Syndrome/genetics , Marfan Syndrome/metabolism , Mice , Mutation , Phenotype , Phosphorylation , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...